In this study, we define (f, p)-Asymptotically Lacunary Equivalent Sequences with respect to the ideal I using a non-trivial ideal , a lacunary sequence , a strictly positive sequence , and a modulus function f, and obtain some revelent connections between these notions.
References
[1]
Freedman, A.R, Sember, J.J. and Raphel, M. (1978) Some Cesaro-Type Summability Spaces. Proceedings London Mathematical Society, 37, 508-520. http://dx.doi.org/10.1112/plms/s3-37.3.508
[2]
Nakano, H. (1953) Concave Modulars. Journal of the Mathematical Society of Japan, 5, 29-49. http://dx.doi.org/10.2969/jmsj/00510029
[3]
Connor, J.S. (1989) On Strong Matrix Summability with Respect to a Modulus and Statistical Convergence. Canadian Mathematical Bulletin, 32, 194-198. http://dx.doi.org/10.4153/CMB-1989-029-3
[4]
Kolk, E. (1993) On Strong Boundedness and Summability with Respect to a Sequence Moduli. Tartu ülikooli Toimetised, 960, 41-50.
[5]
Maddox, I.J. (1986) Sequence Spaces Defined by a Modulus. Mathematical Proceedings of the Cambridge Philosophical Society, 100, 161-166. http://dx.doi.org/10.1017/S0305004100065968
[6]
Öztürk, E. and Bilgin, T. (1994) Strongly Summable Sequence Spaces Defined by a Modulus. Indian Journal of Pure and Applied Mathematics, 25, 621-625.
[7]
Pehlivan, S. and Fisher, B. (1994) On Some Sequence Spaces. Indian Journal of Pure and Applied Mathematics, 25, 1067-1071.
[8]
Ruckle, W.H (1973) FK Spaces in Which the Sequence of Coordinate Vectors Is Bounded. Canadian Journal of Mathematics, 25, 973-978. http://dx.doi.org/10.4153/CJM-1973-102-9
[9]
Marouf, M. (1993) Asymptotic Equivalence and Summability. International Journal of Mathematics and Mathematical Sciences, 16, 755-762. http://dx.doi.org/10.1155/S0161171293000948
Metin, B. and Selma, A. (2008) On δ-Lacunary Statistical Asymptotically Equivalent Sequences. Filomat, 22, 161-172. http://dx.doi.org/10.2298/FIL0801161B
[12]
Basarir, M. and Altundag, S. (2011) On Asymptotically Equivalent Difference Sequences with Respect to a Modulus Function. Ricerche di Matematica, 60, 299-311. http://dx.doi.org/10.1007/s11587-011-0106-0
[13]
Patterson, R.F. and Savas, E. (2006) On Asymptotically Lacunary Statistically Equivalent Sequences. Thai Journal of Mathematics, 4, 267-272.
[14]
Kostyrko, P., Salat, T. and Wilczynski, W. (2001) I-Convergence. Real Analysis Exchange, 26, 669-686.
[15]
Das, P., Savas, E. and Ghosal, S. (2011) On Generalizations of Certain Summability Methods Using Ideals. Applied Mathematics Letters, 24, 1509-1514. http://dx.doi.org/10.1016/j.aml.2011.03.036
[16]
Dems, K. (2004) On I-Cauchy Sequences. Real Analysis Exchange, 30, 123-128.
[17]
Savas, E. and Gumus, H. (2013) A Generalization on Ι-Asymptotically Lacunary Statistical Equivalent Sequences. Journal of Inequalities and Applications, 2013, 270.
[18]
Kumar, V. and Sharma, A. (2012) Asymptotically Lacunary Equivalent Sequences Defined by Ideals and Modulus Function. Mathematical Sciences, 6, 1-5.
[19]
Kumar, V. and Mursaleen, M. (2003) On Ideal Analogue of Asymptotically Lacunary Statistical Equivalence of Sequences. Acta Universitatis Apulensis, 36, 109-119.
[20]
Bilgin, T. (2011) f-Asymptotically Lacunary Equivalent Sequences. Acta Universitatis Apulensis, 28, 271-278.
[21]
Connor, J.S. (1988) The Statistical and Strong p-Cesaro Convergence of Sequences. Analysis, 8, 47-63. http://dx.doi.org/10.1524/anly.1988.8.12.47
[22]
Fast, H. (1951) Sur la convergence statistique. Colloquium Mathematicae, 2, 241-244.
[23]
Fridy, J.A. (1985) On Statistical Convergence. Analysis, 5, 301-313. http://dx.doi.org/10.1524/anly.1985.5.4.301
[24]
Fridy, J.A. and Orhan, C. (1993) Lacunary Statistical Convergent. Pacific Journal of Mathematics, 160, 43-51. http://dx.doi.org/10.2140/pjm.1993.160.43
[25]
Fridy, J.A. and Orhan, C. (1993) Lacunary Statistical Summability. Journal of Mathematical Analysis and Applications, 173, 497-504. http://dx.doi.org/10.1006/jmaa.1993.1082