A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The application of band pass filter in Figure 4(a), notch filter in Figure 5(a) and Hartley oscillator in Figure 6(a) and simulation result in Figures 4(b)-(d), Figures 5(b)-(d), Figures 6(b)-(d) shows the workability of proposed configuration.
References
[1]
Nay, K.W. and Budak, A. (1983) A Voltage-Controlled Resistance with Wide Dynamic Range and No Distortion. IEEE Transaction on Circuits and Systems, 30, 770-772. http://dx.doi.org/10.1109/TCS.1983.1085290
[2]
Nay, K.W. and Budak, A. (1985) A Variable Negative Resistance. IEEE Transactions on Circuits and Systems, 32, 1193-1194. http://dx.doi.org/10.1109/TCS.1985.1085637
[3]
Senani, R. and Bhaskar, D.R. (1991) Realization of Voltage-Controlled Impedances. IEEE Transactions on Circuits and Systems, 38, 1081-1086. http://dx.doi.org/10.1109/31.83879
[4]
Senani, R. and Bhaskar, D.R. (1992) A Simple Configuration for Realizing Voltage-Controlled Impedances. IEEE Transactions on Circuits and Systems, 39, 52-59. http://dx.doi.org/10.1109/81.109244
[5]
Senani, R. and Bhaskar, D.R. (1994) Versatile Voltage-Controlled Impedance Configuration. IEEE Proceedings— Circuits Devices and Systems, 141, 414-416. http://dx.doi.org/10.1049/ip-cds:19941296
[6]
Senani, R. (1995) Universal Linear Voltage-Controlled Impedance Configuration. IEE Proceedings—Circuits Devices and Systems, 142, 208. http://dx.doi.org/10.1049/ip-cds:19951944
[7]
Ndjountche, T. (1996) Linear Voltage-Controlled Impedance Architecture. Electronics Letters, 32, 1528-1529. http://dx.doi.org/10.1049/el:19961020
[8]
Leuciuc, A. and Goras, L. (1998) New General Immittance Converter JFET Voltage-Controlled Impedances and Their Applications to Controlled Biquads Synthesis. IEEE Transactions on Circuits and Systems, 45, 678-682. http://dx.doi.org/10.1109/81.678494
[9]
Senani, R. (1994) Realisation of Linear Voltage-Controlled Resistance in Floating Form. Electronics Letters, 30, 1909-1911. http://dx.doi.org/10.1049/el:19941313
[10]
Senani, R. (1995) Floating GNIC/GNII Configuration Realized with Only a Single OMA. Electronics Letters, 31, 423-424. http://dx.doi.org/10.1049/el:19950287
[11]
Kiranon, W. and Pawarangkoon, P. (1997) Floating Inductance Simulation Based on Current Conveyors. Electronics Letters, 33, 1748-1749. http://dx.doi.org/10.1049/el:19971202
[12]
Abuelmaatti, M.T. (1998) Comment: Floating Inductance Simulation Based on Current Conveyors. Electronics Letters, 34, 1037. http://dx.doi.org/10.1049/el:19980743
[13]
Layos, M.C. and Haritantis, I. (1997) On the Derivation of Current-Mode Floating Inductors. International Journal of Circuit Theory and Applications, 25, 29-36. http://dx.doi.org/10.1002/(SICI)1097-007X(199701/02)25:1<29::AID-CTA948>3.0.CO;2-#
[14]
Yuce, E., Cicekoglu, O. and Minaei, S. (2006) CCII-Based Grounded to Floating Immittance Converter and a Floating Inductance Simulator. Analog Integrated Circuits and Signal Processing, 46, 287-291. http://dx.doi.org/10.1007/s10470-006-1624-7
[15]
Elwan, H.O. and Soliman, A. (1997) Novel CMOS Differential Voltage Current Conveyor and Its Applications. IEEE Proceedings—Circuits Devices and Systems, 144, 195-200. http://dx.doi.org/10.1049/ip-cds:19971081
[16]
Ndjountche, T., Unbehauen, R. and Luo, F.L. (1999) Electronically Tunable Generalized Impedance Converter Structures. International Journal of Circuit Theory and Applications, 27, 517-522. http://dx.doi.org/10.1002/(SICI)1097-007X(199909/10)27:5<517::AID-CTA76>3.0.CO;2-Y
[17]
Senani, R. (1996) Novel Linear Voltage Controlled Floating-Impedance Configurations. ELL/96/53450.