Polyester knitted fabrics have been equipped with antibacterial properties by coating with aqueous suspensions of zinc oxide (ZnO) with different particle diameters. It can be shown that the antibacterial efficacy against Staphylococcus aureus and Klebsiella pneumonia and the permanence of the coating after defined washing cycles depends on the composition of the ZnO dispersion. To improve the wettability of the textile, the combustion chemical vapor deposition (CCVD) is used to generate a hydrophilic nano layer of a hydroxyl terminated silicon network on the surface of the textiles. The comparison of CCVD-treated and untreated polyester samples does not show differences in the antibacterial activity. The influence of the coating in terms of amount and particle size of ZnO on the viability and proliferation of 3T3 mouse fibroblast cells is examined. A particle content of a maximum of 20 μg ZnO/cm2 is found to be cytocompatible for coating of textiles.
References
[1]
Hsu, B.B. and Klibanov, A.M. (2011) Light-Activated Covalent Coating of Cotton with Bactericidal Hydrophobic Polycations. Biomacromolecules, 12, 6-9. http://dx.doi.org/10.1021/bm100934c
[2]
Liang, J., Chen, Y., Barnes, K., Wu, R., Worley, S.D. and Huang T.S. (2006) N-Halamine/Quat Siloxane Copolymers for Use in Biocidal Coatings. Biomaterials, 27, 2495-2501. http://dx.doi.org/10.1016/j.biomaterials.2005.11.020
[3]
Gao, Y. and Cranston, R. (2008) Recent Advances in Antimicrobial Treatments of Textiles. Textile Research Journal, 78, 60-72. http://dx.doi.org/10.1177/0040517507082332
[4]
Mahltig, B., Fiedler, D. and Böttcher, H. (2004) Antimicrobial Sol-Gel Coatings. Journal of Sol-Gel Science and Tech- nology, 32, 219-222. http://dx.doi.org/10.1007/s10971-004-5791-7
[5]
Radetic, M., Ilic, V., Vodnik, V., Dimitrijevic, S., Jovancic, P., Saponjic, Z. and Nedeljkovic, J.M. (2008) Antibacterial Effect of Silver Nanoparticles Deposited on Corona-Treated Polyester and Polyamide Fabrics. Polymers for Advanced Technologies, 19, 1816-1821. http://dx.doi.org/10.1002/pat.1205
[6]
Ilic, V., Saponjic, Z., Vodnik, V., Lazovicic, S., Dimitrijevic, S., Jovancic, P., Nedeljkovic, J.M. and Radetic, M. (2010) Bactericidal Efficiency of Silver Nanoparticles Deposited onto Radio Frequency Plasma Pretreated Polyester Fabrics. Industrial & Engineering Chemistry Research, 49, 7287-7293. http://dx.doi.org/10.1021/ie1001313
[7]
Mejía, M.I., Restrepo, G., Marín, J.M., Sanjines, R., Pulgarín, C., Mielczarski, E., Mielczarski, J. and Kiwi, J. (2010) Magnetron-Sputtered Ag Surfaces. New Evidence for the Nature of the Ag Ions Intervening in Bacterial Inactivation. ACS Applied Materials & Interfaces, 2, 230-235. http://dx.doi.org/10.1021/am900662q
[8]
Torres, A., Ruales, C., Pulgarin, C., Aimable, A., Bowen, P., Sarria, V. and Kiwi, J. (2010) Innovative High-Surface- Area CuO Pretreated Cotton Effective in Bacterial Inactivation under Visible Light. ACS Applied Materials & Interfaces, 2, 2547-2552. http://dx.doi.org/10.1021/am100370y
[9]
Chen, Z., Luo, J. and Sun, Y. (2007) Biocidal Effiacy, Biofilm-Controlling Function, and Controlled Release Effect of Chloromelamine-Based Bioresponsive Fibrous Materials. Biomaterials, 28, 1597-1609.
http://dx.doi.org/10.1016/j.biomaterials.2006.12.001
[10]
Ringot, C., Sol, V., Barrière, M., Saad, N., Bressollier, P., Granet, R., Couleaud, P., Frochot, C. and Krausz, P. (2011) Triazinyl Porphyrin-Based Photoactive Cotton Fabrics: Preparation, Characterization, and Antibacterial Activity. Biomacromolecules, 12, 1716-1723. http://dx.doi.org/10.1021/bm200082d
[11]
El-tahlawy, K.F., El-bendary, M.A., Elhendawy, A.G. and Hudson, S.M. (2005) The Antimicrobial Activity of Cotton Fabrics Treated with Different Crosslinking Agents and Chitosan. Carbohydrate Polymers, 60, 421-430.
http://dx.doi.org/10.1016/j.carbpol.2005.02.019
[12]
Alonso, D., Gimeno, M., Olayo, R., Vázquez-Torres, H., Sepúlveda-Sánchez, J.D. and Shirai, K. (2009) Cross-Linking Chitosan into UV-Irradiated Cellulose Fibers for the Preparation of Antimicrobial-Finished Textiles. Carbohydrate Polymers, 77, 536-543. http://dx.doi.org/10.1016/j.carbpol.2009.01.027
[13]
Brausch, J.M. and Rand, G.M. (2011) A Review of Personal Care Products in the Aquatic Environment: Environmental Concentrations and Toxicity. Chemosphere, 82, 1518-1532.
http://dx.doi.org/10.1016/j.chemosphere.2010.11.018
[14]
Holdsworth, S.R. and Law, C.J. (2013) The Major Facilitator Superfamily Transporter MdtM Contributes to the Intrinsic Resistance of Escherichia coli to Quaternary Ammonium Compounds. Journal of Antimicrobial Chemotherapy, 68, 831-839. http://dx.doi.org/10.1093/jac/dks491
[15]
Braga, T.M., Marujo, P.E., Pomba, C. and Lopes, M.F.S. (2011) Involvement, and Dissemination, of the Enterococcal Small Multidrug Resistance Transporter QacZ in Resistance to Quaternary Ammonium Compounds. Journal of Antimicrobial Chemotherapy, 66, 283-286. http://dx.doi.org/10.1093/jac/dkq460
[16]
Ciusa, M.L., Furi, L., Knight, D., Decorosi, F., Fondi, M., Raggi, C., Coelho, J.R., Aragones, L., Moce, L., Visa, P., Freitas, A.T., Baldassarri, L., Fani, R., Viti, C., Orefici, G., Martinez, J.L., Morrissey, I. and Oggioni, M.R. (2012) A Novel Resistance Mechanism to Triclosan That Suggests Horizontal Gene Transfer and Demonstrates a Potential Selective Pressure for Reduced Biocide Susceptibility in Clinical Strains of Staphylococcus aureus. International Journal of Antimicrobial Agents, 40, 210-220. http://dx.doi.org/10.1016/j.ijantimicag.2012.04.021
[17]
Vigneshwaran, N., Kumar, S., Kathe, A.A., Varadarajan, P.V. and Prasad, V. (2006) Functional Finishing of Cotton Fabrics Using Zinc Oxide-Soluble Starch Nanocomposites. Nanotechnology, 17, 5087-5095.
http://dx.doi.org/10.1088/0957-4484/17/20/008
[18]
Rajendran, R., Balakumar, C., Ahammed, H.A.M., Jayakumar, S., Vaideki, K. and Rajesh, E. (2010) Use of Zinc Oxide Nano Particles for Production of Antimicrobial Textiles. International Journal of Engineering Science and Technology, 2, 202-208.
[19]
Kathirvelu, S., D’Souza, L. and Dhurai, B. (2008) A Comparative Study of Multifunctional Finishing of Cotton and P/C Blended Fabrics Treated with Titanium Dioxide/Zinc Oxide Nanoparticles. Indian Journal of Science and Tech- nology, 1, 1-12. http://www.indjst.org/index.php/indjst/article/view/29597
[20]
Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z.Q. and Lin, M. (2009) Antibacterial Activities of ZnO Nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 107, 1193-1201.
http://dx.doi.org/10.1111/j.1365-2672.2009.04303.x
[21]
Xie, Y., He, Y., Irwin, P.L., Jin, T. and Shi, X. (2011) Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77, 2325-2331.
http://dx.doi.org/10.1128/AEM.02149-10
[22]
Nair, S., Sasidharan, A., Divya Rani, V.V., Menon, D., Nair, S., Manzoor, K. and Raina, S. (2009) Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells. Journal of Materials Science: Materials in Medicine, 20, 235-241. http://dx.doi.org/10.1007/s10856-008-3548-5
[23]
Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. and Fievet, F. (2006) Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Letters, 6, 866- 870. http://dx.doi.org/10.1021/nl052326h
[24]
Wiegand, C., Heinze, T. and Hipler, U.C. (2009) Comparative in Vitro Study on Cytotoxicity, Antimicrobial Activity, and Binding Capacity for Pathophysiological Factors in Chronic Wounds of Alginate and Silver-Containing Alginate. Wound Repair and Regeneration, 17, 511-521. http://dx.doi.org/10.1111/j.1524-475X.2009.00503.x
[25]
Zhang, L., Jiang, Y., Ding, Y., Povey, M. and York, D. (2007) Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids). Journal of Nanoparticle Research, 9, 479-489.
http://dx.doi.org/10.1007/s11051-006-9150-1
[26]
Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C. and Punnoose, A. (2007) Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Applied Physics Letters, 90, Article ID: 213902.
http://dx.doi.org/10.1063/1.2742324
[27]
Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y. and Chai, Z. (2010) Toxicity of Zinc Oxide Nanoparticles to Zebrafish Embryo: A Physicochemical Study of Toxicity Mechanism. Journal of Nanoparticle Research, 12, 1645- 1654. http://dx.doi.org/10.1007/s11051-009-9740-9