全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Archimedean Analysis on the Extended Hyperreal Line *Rd and the Solution of Some Very Old Transcendence Conjectures over the Field Q

DOI: 10.4236/apm.2015.510056, PP. 587-628

Keywords: Non-Archimedean Analysis, Robinson Non-Archimedian Field, Dedekind Completion, Dedekind Hyperreals, Wattenberg Embeding, Gonshor Idempotent Theory, Gonshor Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 1980 F. Wattenberg constructed the Dedekind completion *Rd of the Robinson non-archimedean field *R and established basic algebraic properties of *Rd. In 1985 H. Gonshor established further fundamental properties of *Rd. In [4] important construction of summation of countable sequence of Wattenberg numbers was proposed and corresponding basic properties of such summation were considered. In this paper the important applications of the Dedekind completion *Rd in transcendental number theory were considered. Given any analytic function of one complex variable \"\", we investigate the arithmetic nature of the values of \"\" at transcendental points \"\". Main results are: 1) the both numbers \"\" and \"\" are irrational; 2) number ee is transcendental. Nontrivial generalization of the Lindemann-Weierstrass theorem is obtained.

References

[1]  Nesterenko, Y.V. and Philippon, P., Eds. (2001) Introduction to Algebraic Independence Theory. Series: Lecture Notes in Mathematics, Vol. 1752. XIII, Springer Science & Business Media, 256 pp.
[2]  Waldschmidt, M. (2003) Algebraic Values of Analytic Functions. Journal of Computational and Applied Mathematics, 160, 323-333.
http://dx.doi.org/10.1016/S0377-0427(03)00637-X
[3]  Foukzon, J. (2006) The Solution of one Very Old Problem in Transcendental Numbers Theory. Spring Central Sectional Meeting Notre Dame, IN, 8-9 April 2006, Meeting #1016 Preliminary Report.
http://www.ams.org/meetings/sectional/1016-11-8.pdf
[4]  Foukzon, J. (2013) Non-Archimedean Analysis on the Extended Hyperreal Line *Rd and Some Transcendence Conjectures over Field Q and *Qω.
http://arxiv.org/abs/0907.0467
[5]  Goldblatt, R. (1998) Lectures on the Hyperreals. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-0615-6
[6]  Wattenberg, F. (1980) [0, ∞]-Valued, Translation Invariant Measures on and the Dedekind Completion of . Pacific Journal of Mathematics, 90, 223-247.
http://dx.doi.org/10.2140/pjm.1980.90.223
[7]  Gonshor, H. (1985) Remarks on the Dedekind Completion of a Nonstandard Model of the Reals. Pacific Journal of Mathematics, 118, 117-132.
http://dx.doi.org/10.2140/pjm.1985.118.117
[8]  Shidlovsky, A.B. (1982) Diophantine Approximations and Transcendental Numbers. Moscow State University, Moscov. (In Russian).
http://en.bookfi.org/book/506517
http://bookre.org/reader?file=506517&pg=129

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133