In this paper, we prove the relationship between selection expectation and support function by a new method.
References
[1]
Molchanov, I.S. (2005) Theory of Random Sets. Springer, London.
[2]
Matheron, G. (1975) Random Sets and Integral Geometry. Wiley, New York.
[3]
Artstein, Z. (1974) On the Calculus of Set-Valued Functions. Indiana University Mathematics Journal, 24, 433-441.
http://dx.doi.org/10.1512/iumj.1975.24.24034
[4]
Artstein, Z. and Vitale, R.A. (1975) A Strong Law of Large Numbers for Random Compact Sets. Annals of Probability, 5, 879-882. http://dx.doi.org/10.1214/aop/1176996275
[5]
Cressie, N. (1978) A Strong Limit Theorem for Random Sets. Advances in Applied Probability, 10, 36-46.
http://dx.doi.org/10.2307/1427005
[6]
Kendall, D.G. (1974) Foundations of a Theory of Random Sets. In: Harding, E.F. and Kendall, D.G., Eds., Stochastic Geometry, Wiley, New York.
[7]
Puri, M.L. and Ralescu, D.A. (1983) Strong Law of Large Numbers for Banach Space Valued Random Sets. Annals of Probability, 1, 222-224. http://dx.doi.org/10.1214/aop/1176993671
[8]
Schneider, R. and Weil, W. (2000) Stochastische Geometrie. Teubner, Leipzig.
http://dx.doi.org/10.1007/978-3-322-80106-7
[9]
Vitale, R.A. (1990) The Brunn-Minkowski Inequality for Random Sets. Journal of Multivariate Analysis, 33, 286-293.
http://dx.doi.org/10.1016/0047-259X(90)90052-J
[10]
Vitale, R.A. (1991) Expected Absolute Random Determinants and Zonoids. Annals of Applied Probability, 1, 293-300.
http://dx.doi.org/10.1214/aoap/1177005938
[11]
Vitale, R.A. (1995) On the Volume of Parallel Bodies: A Probabilistic Derivation of the Steiner Formula. Advances in Applied Probability, 27, 97-101. http://dx.doi.org/10.2307/1428098
[12]
Vitale, R.A. (1996) The Wills Functional and Gaussian Processes. Annals of Probability, 24, 2172-2178.
http://dx.doi.org/10.1214/aop/1041903224
[13]
Weil, W. and Wteacker, J.A. (1993) Stochastic Geometry. In: Gruber, P.M. and Wills, J.M., Eds., Handbook of Convex Geometry, Elsevier Sci. Publ., North-Holland, 1393-1438. http://dx.doi.org/10.1016/b978-0-444-89597-4.50023-8
[14]
Schneider, R. (1993) Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511526282
[15]
Gardner, R.J. (1995) Geometric Tomography. Cambridge University Press, Cambridge.
[16]
Aumann, R.J. (1965) Integrals of Set-Valued Functions. Journal of Mathematical Analysis and Applications, 12, 1-12.
http://dx.doi.org/10.1016/0022-247X(65)90049-1