We review the new type of Deutsch-Jozsa
algorithm proposed in [K. Nagata and T. Nakamura, Int. J. Theor. Phys. 49, 162
(2010)]. We suggest that the Deutsch-Jozsa algorithm can be used for quantum
key distribution. Alice sends input N 1 partite uncorrelated state to a black box. Bob measures output state. Now,
Alice and Bob have promised to use a function f which is one of two kinds: either the value of f is constant or balanced. To Eve, it is
secret. Alice’s and Bob’s goal is to determine with certainty whether they have
chosen a constant or a balanced function. Alice and Bob get one bit if they
determine the function f. The speed
to get one bit improves by a factor of 2N.
This may improve the speed to establish quantum key distribution by a factor of
2N.
References
[1]
von
Neumann, J. (1955) Mathematical Foundations of Quantum
Mechanics. Princeton University Press, Princeton.
[2]
Feynman, R.P., Leighton, R.B. and Sands, M. (1965) Lectures on Physics. Volume 3,
Quantum Mechanics, Addison- Wesley Publishing Company.
[3]
Redhead, M. (1989) Incompleteness,
Nonlocality, and Realism. 2nd Edition, Clarendon Press, Oxford.
[4]
Peres,
A. (1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht.
Nielsen, M.A. and Chuang, I.L. (2000) Quantum
Computation and Quantum Information. Cambridge University Press, Cambridge.
[7]
Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An
Incompatibility Theorem. Foundations of Physics, 33, 1469-1493. http://dx.doi.org/10.1023/A:1026096313729
[8]
Groblacher,
S., Paterek, T., Kaltenbaek, R., Brukner, C., Zukowski, M., Aspelmeyer, M. and
Zeilinger, A. (2007) An Experimental
Test of Non-Local Realism. Nature (London), 446, 871-875. http://dx.doi.org/10.1038/nature05677
[9]
Paterek, T., Fedrizzi, A., Groblacher, S., Jennewein, T., Zukowski, M., Aspelmeyer, M. and Zeilinger, A.
(2007) Experimental Test of Nonlocal Realistic Theories without the Rotational
Symmetry Assumption. Physical Review Letters, 99, Article ID: 210406. http://dx.doi.org/10.1103/PhysRevLett.99.210406
[10]
Branciard,
C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of
Leggett’s Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407. http://dx.doi.org/10.1103/PhysRevLett.99.210407
[11]
Deutsch,
D. (1985) Quantum Theory, the
Church-Turing Principle and the Universal Quantum Computer.Proceedings of the Royal Society of London. Series A, 400, 97. http://dx.doi.org/10.1098/rspa.1985.0070
[12]
Jones, J.A. and
Mosca, M.
(1998) Implementation of a Quantum Algorithm on a Nuclear Magnetic Resonance
Quantum Computer. The Journal of Chemical Physics, 109, 1648. http://dx.doi.org/10.1063/1.476739
[13]
Gulde,
S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Haffner, H., Schmidt-Kaler, F., Chuang, I.L. and Blatt, R. (2003) Implementation of the Deutsch-Jozsa Algorithm on an Ion-Trap Quantum
Computer. Nature, 421, 48-50. http://dx.doi.org/10.1038/nature01336
[14]
de
Oliveira, A.N., Walborn, S.P. and Monken, C.H. (2005) Implementing the Deutsch
Algorithm with Polarization and Transverse Spatial Modes. Journal of Optics B: Quantum and Semiclassical
Optics, 7, 288-292. http://dx.doi.org/10.1088/1464-4266/7/9/009
[15]
Kim, Y.-H. (2003) Single-Photon Two-Qubit
Entangled States: Preparation and Measurement. Physical Review A, 67, Article ID: 040301(R).
[16]
Mohseni, M., Lundeen, J.S., Resch, K.J.
and Steinberg, A.M.
(2003) Experimental Application of Decoherence-Free Subspaces in an Optical
Quantum-Computing Algorithm. Physical Review Letters, 91, Article ID: 187903. http://dx.doi.org/10.1103/PhysRevLett.91.187903
[17]
Tame,
M.S., Prevedel, R., Paternostro, M., Bohi, P., Kim, M.S. and Zeilinger, A. (2007) Experimental Realization of Deutsch’s Algorithm in a One-Way
Quantum Computer. Physical Review Letters, 98, Article ID: 140501. http://dx.doi.org/10.1103/PhysRevLett.98.140501
[18]
Nagata, K. and Nakamura,
T. (2010) Can von
Neumann’s Theory Meet the Deutsch-Jozsa Algorithm? International Journal of
Theoretical Physics, 49, 162-170. http://dx.doi.org/10.1007/s10773-009-0189-5