Recently, violation of Heisenberg’s uncertainty relation in spin
measurements is discussed [J. Erhart et al., Nature Physics 8, 185
(2012)] and [G. Sulyok et al., Phys. Rev. A 88, 022110 (2013)]. We
derive the optimal limitation of Heisenberg’s uncertainty principle in a
specific two-level system (e.g., electron spin, photon polarizations, and so
on). Some physical situation is that we would measure σx and σy, simultaneously. The
optimality is certified by the Bloch sphere. We show that a violation of
Heisenberg’s uncertainty principle means a violation of the Bloch sphere in the
specific case. Thus, the above experiments show a violation of the Bloch sphere
when we use ±1 as measurement outcome. This conclusion agrees with recent researches
[K. Nagata, Int. J. Theor. Phys. 48, 3532 (2009)] and [K. Nagata et al.,
Int. J. Theor. Phys. 49, 162 (2010)].
Peres, A. (1993) Quantum Theory:
Concepts and Methods. Kluwer Academic, Dordrecht.
[3]
Redhead, M. (1989) Incompleteness, Nonlocality, and Realism. 2nd
Edition, Clarendon Press, Oxford.
[4]
von Neumann, J. (1955) Mathematical
Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[5]
Nielsen, M.A.
and Chuang, I.L. (2000) Quantum Computation
and Quantum Information. Cambridge University Press, Cambridge.
[6]
Leggett, A.J. (2003) Nonlocal
Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations
of Physics, 33,
1469-1493. http://dx.doi.org/10.1023/A:1026096313729
[7]
Groblacher, S., Paterek, T., Kaltenbaek, R., Brukner,
C., Zukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An
Experimental Test of Non-Local Realism. Nature (London), 446,
871-875. http://dx.doi.org/10.1038/nature05677
[8]
Paterek, T., Fedrizzi, A., Groblacher, S., Jennewein, T., Zukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) Experimental Test of Nonlocal Realistic
Theories without the Rotational Symmetry Assumption. Physical Review Letters, 99, Article
ID: 210406. http://dx.doi.org/10.1103/PhysRevLett.99.210406
[9]
Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of Leggett’s
Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407. http://dx.doi.org/10.1103/PhysRevLett.99.210407
[10]
Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum
Computer.Proceedings of the Royal Society of London.
Series A, 400,
97. http://dx.doi.org/10.1098/rspa.1985.0070
[11]
Jones, J.A.
and Mosca, M. (1998) Implementation of a Quantum Algorithm on
a Nuclear Magnetic Resonance Quantum Computer. The Journal of Chemical Physics, 109, 1648. http://dx.doi.org/10.1063/1.476739
[12]
Gulde, S.,
Riebe, M., Lancaster,
G.P.T.,
Becher, C.,
Eschner, J.,
Haffner, H.,
Schmidt-Kaler, F., Chuang, I.L. and Blatt, R. (2003) Implementation of the Deutsch-Jozsa
Algorithm on an Ion-Trap Quantum Computer. Nature, 421,
48-50. http://dx.doi.org/10.1038/nature01336
[13]
de Oliveira, A.N., Walborn, S.P. and Monken, C.H. (2005) Implementing the Deutsch Algorithm with
Polarization and Transverse Spatial Modes. Journal of Optics B: Quantum and Semiclassical Optics, 7,
288-292. http://dx.doi.org/10.1088/1464-4266/7/9/009
[14]
Kim, Y.-H. (2003) Single-Photon Two-Qubit Entangled
States: Preparation and Measurement. Physical Review A, 67, Article
ID: 040301(R).
[15]
Mohseni, M., Lundeen,
J.S., Resch,
K.J. and Steinberg, A.M.
(2003) Experimental Application of Decoherence-Free Subspaces in an Optical
Quantum-Computing Algorithm. Physical Review Letters, 91, Article ID: 187903. http://dx.doi.org/10.1103/PhysRevLett.91.187903
[16]
Tame, M.S.,
Prevedel, R., Paternostro,
M.,
Bohi, P., Kim,
M.S. and Zeilinger, A.
(2007) Experimental Realization of Deutsch’s Algorithm in a One-Way Quantum
Computer. Physical
Review Letters, 98, Article ID: 140501. http://dx.doi.org/10.1103/PhysRevLett.98.140501
[17]
Heisenberg, W. (1927) über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Zeitschrift
für Physik, 43, 172-198. http://dx.doi.org/10.1007/BF01397280
Weyl, H. (1928)Gruppentheorie und
Quantenmechanik.
Hirzel, Leipzig.
[20]
Ozawa, M. (2003) Universally Valid Reformulation of the
Heisenberg Uncertainty Principle on Noise and Disturbance in Measurement. Physical Review A, 67, Article ID: 042105. http://dx.doi.org/10.1103/PhysRevA.67.042105
[21]
Erhart, J., Sponar,
S., Sulyok, G., Badurek,
G.,
Ozawa, M. and Hasegawa, Y.
(2012) Experimental Demonstration of a Universally Valid Error-Disturbance
Uncertainty Relation in Spin Measurements. Nature Physics, 8, 185-189. http://dx.doi.org/10.1038/nphys2194
[22]
Sulyok, G.,
Sponar, S.,
Erhart, J., Badurek,
G.,
Ozawa, M. and Hasegawa, Y.
(2013) Violation
of Heisenberg’s Error-Disturbance Uncertainty Relation in Neutron-Spin
Measurements. Physical Review A, 88, Article ID: 022110. http://dx.doi.org/10.1103/PhysRevA.88.022110
[23]
Nagata, K. (2009) There Is No Axiomatic System for the
Quantum Theory. International
Journal of Theoretical Physics, 48, 3532-3536. http://dx.doi.org/10.1007/s10773-009-0158-z
[24]
Nagata, K.
and Nakamura, T. (2010) Can von
Neumann’s Theory Meet the Deutsch-Jozsa Algorithm? International Journal of Theoretical Physics, 49,
162-170. http://dx.doi.org/10.1007/s10773-009-0189-5
Schrodinger, E. (1930) Zum Heisenbergschen Unscharfeprinzip. Sitzungsberichte der Preussischen Akademie der
Wissenschaften, Physikalisch-mathematische Klasse, 14, 296-303.
Riley, K.F., Hobson, M.P. and Bence, S.J. (2006)Mathematical Methods
for Physics and Engineering. Cambridge
University Press, Cambridge, 246. http://dx.doi.org/10.1017/CBO9780511810763