|
基因编辑技术的方法、原理及应用
|
Abstract:
[1] | Esvelt, K.M. and Wang, H.H. (2013) Genome-scale engineering for systems and synthetic biology. Molecular Systems Biology, 9, 641. http://dx.doi.org/10.1038/msb.2012.66 |
[2] | Puchta, H. and Fauser, F. (2013) Gene targeting in plants: 25 years later. The International Journal of Developmental Biology, 57, 629-637. http://dx.doi.org/10.1387/ijdb.130194hp |
[3] | Tan, W.S., Carlson, D.F., Walton, M.W., Fahrenkrug, S.C. and Hackett, P.B. (2012) Precision editing of large animal genomes. Advances in Genetics, 80, 37-97. http://dx.doi.org/10.1016/B978-0-12-404742-6.00002-8 |
[4] | Dianov, G.L. and Hubscher, U. (2013) Mammalian base excision repair: The forgotten archangel. Nucleic Acids Research, 41, 3483-3490. http://dx.doi.org/10.1093/nar/gkt076 |
[5] | H?ndel, E.M. and Cathomen, T. (2011) Zinc-finger nuclease based ge-nome surgery: It’s all about specificity. Current Gene Therapy, 11, 28-37. http://dx.doi.org/10.2174/156652311794520120 |
[6] | Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual- RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821.
http://dx.doi.org/10.1126/science.1225829 |
[7] | Ragg, H. (2011) Intron creation and DNA repair. Cellular and Molecular Life Sciences, 68, 235-242.
http://dx.doi.org/10.1007/s00018-010-0532-2 |
[8] | Reissb, B., Schubert, I., Kopchen, K., Wendeler, E., Schell, J. and Puchta, H. (2000) A stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 97, 3358-3363.
http://dx.doi.org/10.1073/pnas.97.7.3358 |
[9] | Lieberman-Lazarovich, M. and Levya, A. (2011) Homologous re-combination in plants: An antireview. Methods in Molecular Biology, 701, 51-65. http://dx.doi.org/10.1007/978-1-61737-957-4_3 |
[10] | Klug, A. (2010) The discovery of zinc fingers and their ap-plications in gene regulation and genome manipulation. Annual Review of Biochemistry, 79, 213-231. http://dx.doi.org/10.1146/annurev-biochem-010909-095056 |
[11] | Beerli, R.R. and Barbas III., C.F. (2002) Engi-neering polydactyl zinc-finger transcription factors. Nature Biotechnology, 20, 135-141. http://dx.doi.org/10.1038/nbt0202-135 |
[12] | Dreier, B., Segal, D.J. and Barbas III., C.F. (2000) Insights into the molecular recognition of the 5′2 GNN23′ family of DNA sequence by zinc finger domains. Journal of Molecular Biology, 303, 489-502.
http://dx.doi.org/10.1006/jmbi.2000.4133 |
[13] | Bitinaite, J., Wah, D.A., Aggarwal, A.K. and Schildkraut, I. (2002) FokI dimerization is required for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 95, 10570-10575.
http://dx.doi.org/10.1073/pnas.95.18.10570 |
[14] | Miller, J.C., Holmes, M.C., Wang, J., Guschin, D.Y., Lee, Y.L., Rupniewski, I., Beausejour, C.M., Waite, A.J., Wang, N.S., Kim, K.A., Gregory, P.D., Pabo, C.O. and Rebar, E.J. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 25, 778-785. http://dx.doi.org/10.1038/nbt1319 |
[15] | Carroll, D. (2011) Genome engineering with zinc-finger nucleases. Genetics, 188, 773-782.
http://dx.doi.org/10.1534/genetics.111.131433 |
[16] | Isalan, M., Choo, Y. and Klug, A. (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 94, 5617-5621.
http://dx.doi.org/10.1073/pnas.94.11.5617 |
[17] | Imanishi, M., Nakamura, A., Morisaki, T. and Futaki, S. (2009) Positive and negative cooperativity of modularly assembled zinc fingers. Biochemical and Biophysical Research Communications, 387, 440-443.
http://dx.doi.org/10.1016/j.bbrc.2009.07.059 |
[18] | Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., Dulay, G.P., Hua, K.L., Ankoudinova, I., Cost, G.J., Urnov, F.D., Zhang, H.S., Holmes, M.C., Zhang, L., Gregory, P.D. and Rebar, E.J. (2011) A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143-148.
http://dx.doi.org/10.1038/nbt.1755 |
[19] | Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. and Bonas, U. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509-1512.
http://dx.doi.org/10.1126/science.1178811 |
[20] | Moscou, M.J. and Bogdanove, A.J. (2009) A simple cipher go-verns DNA recognition by TAL effectors. Science, 326, 1501. http://dx.doi.org/10.1126/science.1178817 |
[21] | Streubel, J., Blücher, C., Landgraf, A. and Boch, J. (2012) TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30, 593-595. http://dx.doi.org/10.1038/nbt.2304 |
[22] | Joung, J.K. and Sander, J.D. (2013) TALENs: A widely applicable tech-nology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14, 49-55. http://dx.doi.org/10.1038/nrm3486 |
[23] | Chen, S., Oikonomou, G., Chiu, C.N., Niles, B.J., Liu, J., Lee, D.A., An-toshechkin, I. and Prober, D.A. (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mu-tagenic than ZFNs generated using context- dependent assembly. Nucleic Acids Research, 41, 2769-2678. http://dx.doi.org/10.1093/nar/gks1356 |
[24] | Miller, J.C., Zhang, L., Xia, D.F., Campo, J.J., Ankoudinova, I.V., Guschin, D.Y., Babiarz, J.E., Meng, X., Hinkley, S.J., Lam, S.C., Paschon, D.E., Vincent, A.I., Dulay, G.P., Barlow, K.A., Shivak, D.A., Leung, E., Kim, J.D., Amora, R., Urnov, F.D., Gregory, P.D. and Rebar, E.J. (2015) Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 12, 465-471. http://dx.doi.org/10.1038/nmeth.3330 |
[25] | Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J. and Voytas, D.F. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, 82. http://dx.doi.org/10.1093/nar/gkr218 |
[26] | Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429-5433. |
[27] | Jansen, R., Embden, J.D., Gaastra, W. and Schouls, L.M. (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43, 1565-1575. http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x |
[28] | Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A. and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712.
http://dx.doi.org/10.1126/science.1138140 |
[29] | Jiang, F. and Doudna, J.A. (2015) The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100-111. http://dx.doi.org/10.1016/j.sbi.2015.02.002 |
[30] | Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833-838. http://dx.doi.org/10.1038/nbt.2675 |
[31] | Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P. and Moineau, S. (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology, 190, 1390-1400. http://dx.doi.org/10.1128/JB.01412-07 |
[32] | Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas sys-tems. Science, 339, 819-823.
http://dx.doi.org/10.1126/science.1231143 |
[33] | Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G. and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827-832. http://dx.doi.org/10.1038/nbt.2647 |
[34] | Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y. and Zhang, F. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380-1389. http://dx.doi.org/10.1016/j.cell.2013.08.021 |
[35] | Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N. and Zhu, J.K. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12, 797-807. http://dx.doi.org/10.1111/pbi.12200 |
[36] | Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., Xiang, A.P., Zhou, J., Guo, X., Bi, Y., Si, C., Hu, B., Dong, G., Wang, H., Zhou, Z., Li, T., Tan, T., Pu, X., Wang, F., Ji, S., Zhou, Q., Huang, X., Ji, W. and Sha, J. (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156, 836-843. http://dx.doi.org/10.1016/j.cell.2014.01.027 |
[37] | Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H. and Qu, L.J. (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 10, 1233-1236. http://dx.doi.org/10.1038/cr.2013.123 |
[38] | Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z. and Liu, Y.G. (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, in Press.
http://dx.doi.org/10.1016/j.molp.2015.04.007 |
[39] | Wiedenheft, B., Sternberg, S.H. and Doudna, J.A. (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482, 331-338. http://dx.doi.org/10.1038/nature10886 |
[40] | Gaj, T., Gersbach, C.A. and Barbas III., C.F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397-405. http://dx.doi.org/10.1016/j.tibtech.2013.04.004 |