全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generalized Topological Molecular Lattices

DOI: 10.4236/apm.2015.59051, PP. 552-559

Keywords: Generalized Topological Molecular Lattices, Generalized Order Homomorphisms, Convergence of Molecular Nets, Separation Axioms

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this paper is to introduce the concept of generalized topological molecular lattices briefly GTMLs as a generalization of Wang’s topological molecular lattices TMLs, Császár’s setpoint generalized topological spaces and lattice valued generalized topological spaces. Some notions such as continuous GOHs, convergence theory and separation axioms are introduced. Moreover, the relations among them are investigated.

References

[1]  Wang, G.J. (1992) Theory of Topological Molecular Lattices. Fuzzy Sets and Systems, 47, 351-376.
http://dx.doi.org/10.1016/0165-0114(92)90301-J
[2]  Chen, Y. (1996) Convergence in Topological Molecular Lattices. Fuzzy Sets and Systems, 84, 97-102.
http://dx.doi.org/10.1016/0165-0114(95)00224-3
[3]  Bai, S.Z. (1997) Q-Convergence of Ideals in Fuzzy Lattices and Its Applications. Fuzzy Sets and Systems, 92, 357-363. http://dx.doi.org/10.1016/S0165-0114(96)00174-1
[4]  Chen, S.L. and Wu, Z.X. (2001) Urysohn Separation Property in Topological Molecular Lattices. Fuzzy Sets and Systems, 123, 177-184. http://dx.doi.org/10.1016/S0165-0114(00)00115-9
[5]  El-Saady, K. and Al-Nabbat, F. On Lattice-Valued Generalized Topological Spaces. Submittted for Publication.
[6]  Csàszàr, à. (2002) Generalized Topology, Generalized Continuity. Acta Mathematica Hungarica, 96, 351-357. http://dx.doi.org/10.1023/A:1019713018007
[7]  Al-Nabbat, F. (2015) Lattice-Valued Generalized Neighborhood Structures. To Appear in Southeast Asian Bulletin of Mathematics.
[8]  Yang, Z.Q. (1986) Ideals in Topological Molecular Lattices. Acta Mathematica Sinica, 29, 276-279.
[9]  Chang, C.L. (1968) Fuzzy Topological Spaces. Journal of Mathematical Analysis and Applications, 24, 182-190. http://dx.doi.org/10.1016/0022-247X(68)90057-7
[10]  Liu, Y.M. and Luo, M.K. (1997) Fuzzy Topology. World Scientific, Singapore.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133