全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hopf Bifurcation Analysis for a Modified Time-Delay Predator-Prey System with Harvesting

DOI: 10.4236/jamp.2015.37094, PP. 771-780

Keywords: Hopf Bifurcation, Time-Delay, Predator-Prey Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we consider the direction and stability of time-delay induced Hopf bifurcation in a delayed predator-prey system with harvesting. We show that the positive equilibrium point is asymptotically stable in the absence of time delay, but loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold. Furthermore, using the norm form and the center manifold theory, we investigate the stability and direction of the Hopf bifurcation.

References

[1]  Lotka, A.J. (1925) Elements of Physical Biology. Nature, 116, 461. http://dx.doi.org/10.1038/116461b0
[2]  Volterra, V. (1926) Fluctuations in The Abundance of A Species Considered Mathematically. Nature, 118, 558-560. http://dx.doi.org/10.1038/118558a0
[3]  Yan, X. and Li, W. (2007) Bifurcation and Global Periodic Solutions in A Delayed Facultative Mutualism System. Physica D: Nonlinear Phenomena, 227, 51-69. http://dx.doi.org/10.1016/j.physd.2006.12.007
[4]  Tian, C. and Zhang, L. (2013) Hopf Bifurcation Analysis in a Diffusive Food-Chain Model with Time Delay. Computers & Mathematics with Applications, 66, 2139-2153. http://dx.doi.org/10.1016/j.camwa.2013.09.002
[5]  Kar, T.K. and Jana, S. (2012) Stability and Bifurcation Analysis of a Stage Structured Predator Prey Model with Time Delay. Applied Mathematics & Computation, 219, 3779-3792. http://dx.doi.org/10.1016/j.amc.2012.10.007
[6]  Zhang, J., Li, W. and Yan, X. (2011) Hopf Bifurcation and Turing Instability in Spatial Homogeneous and Inhomogeneous Predator-Prey Models. Applied Mathematics & Computation, 218, 1883-1893. http://dx.doi.org/10.1016/j.amc.2011.06.071

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133