Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-B: Solutions of Differential Inequalities and Asymptotic Admissibility of Standard Derivatives
Part II-B of our work continues the factorizational theory of asymptotic expansions of type (*) , , where the asymptotic scale , , is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of x0. The main result states that to each scale of this type it remains as-sociated an important class of functions (namely that of generalized convex functions) enjoying the property that the expansion (*), if valid, is automatically formally differentiable n ? 1 times in the two special senses characterized in Part II-A. A second result shows that formal applications of ordinary derivatives to an asymptotic expansion are rarely admissible and that they may also yield skew results even for scales of powers.
References
[1]
Granata, A. (2015) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-A: The Factorizational Theory for Chebyshev Asymptotic Scales. Advances in Pure Mathematics, 5, 454-480.
[2]
Granata, A. (2007) Polynomial Asymptotic Expansions in the Real Domain: The Geometric, the Factorizational, and the Stabilization Approaches. Analysis Mathematica, 33, 161-198. http://dx.doi.org/10.1007/s10476-007-0301-0
[3]
Granata, A. (2011) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part I: Two-Term Expansions of Differentiable Functions. Analysis Mathematica, 37, 245-287. http://dx.doi.org/10.1007/s10476-011-0402-7
[4]
Granata, A. (2010) The Problem of Differentiating an Asymptotic Expansion in Real Powers. Part I: Unsatisfactory or Partial Results by Classical Approaches. Analysis Mathematica, 36, 85-112.
http://dx.doi.org/10.1007/s10476-010-0201-6
[5]
Granata, A. (2010) The Problem of Differentiating an Asymptotic Expansion in Real Powers. Part II: Factorizational Theory. Analysis Mathematica, 36, 173-218. http://dx.doi.org/10.1007/s10476-010-0301-3
[6]
Popoviciu T. (1944) Les Fonctions Convexes. Hermann & C éditeurs, Paris.
[7]
Granata, A. (2015) The Factorizational Theory of Finite Asymptotic Expansions in the Real Domain: A Survey of the Main Results. Advances in Pure Mathematics, 5, 1-20. http://dx.doi.org/10.4236/apm.2015.51001
[8]
Bourbaki, N. (1976) Fonctions d’une Variable Réelle—Théorie élémentaire. Hermann, Paris.
[9]
Walter, M. and Ford, B. (1911) Conditions Suffisantes pour qu’une Fonction Admette un Développement Asymptotique. Bulletin de la Société Mathématique de France, 39, 347-352.
[10]
Aumann, G. and Haupt, O. (1974) Einführung in die reelle Analysis. I: Funktionen einer reellen Veränderlichen. Walter de Gruyter, Berlin. http://dx.doi.org/10.1515/9783110841046