|
钒酸铜材料的制备及性能
|
Abstract:
[1] | 郭光辉, 陈珊, 刘芳芳, 张利玉 (2014) Cu2V2O7的合成及电化学性能. 有色金属, 2, 57-60. |
[2] | 张绍岩, 燕红, 高岩磊, 常永芳, 牟微 (2011) 钒酸铜纳米线的制备及光吸收性能. 人工晶体学报, 40, 1517-1520. |
[3] | Sun, X.J., Wang, J.W., Xing, Y., Zhao, Y., Liu, X.C., Liu, B. and Hou, S.Y. (2011) Surfactant-assisted hydrothermal synthesis and electrochemical properties of nanoplate-assembled 3D flower-like Cu3V2O7(OH)2?2H2O microstructures. Crys-tEngComm, 13, 367-370. |
[4] | Andrukaitis, E., Cooper, J.P. and Smit, J.H. (1995) Lithium intercalation in the divalent metal vanadates MeV2O6 (Me=Cu, Co, Ni, Mn or Zn). Journal of Power Sources, 54, 465-469. |
[5] | Yin, C., Zhu, S.M., Chen, Z.X., Zhang, W., Gua, J. and Zhang, D. (2013) One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation. Journal of Materials Chemistry A, 1, 8367-8378. |
[6] | Palacio, L.A., Silva, E.R., Catalao, R., Silva, J.M., Hoyos, D.A., Ribeiro, F.R. and Ribeiro, M.F. (2008) Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. Journal of Hazardous Materials, 153, 628-634. |
[7] | Palacio, L.A., Silva, J.M., Ribeiro, F.R. and Ribeiro, M.F. (2008) Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate. Catalysis Today, 133-135, 502-508. |
[8] | Kawada, T., Hinokuma, S. and Machida, M (2015) Structure and SO3 decomposition activity of nCuO-V2O5/SiO2 (n = 0, 1, 2, 3 and 5) catalysts for solar thermochemical water splitting cycles. Catalysis Today, 242, 268-273. |
[9] | Kawada, T., Yamashita, H., Zheng, Q.X. and Machida, M. (2014) Hydrothermal synthesis of CuV2O6 supported on mesoporous SiO2 as SO3 decomposition catalysts for solar thermochemical hydrogen production. International Journal of Hydrogen Energy, 39, 20646-20651. |
[10] | Cheng, F.Y. and Chen, J. (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. Journal of Materials Chemistry, 21, 9841-9848. |
[11] | Touaiher, M., Rissouli, K., Benkhouja, K., Taibi, M., Aride, J., Boukhari, A. and Heulin, B. (2004) Crystal structures and magnetic properties of M2V2O7 (M = Co, Ni and Cu) compounds. Materials Chemistry and Physics, 85, 41-46. |
[12] | Ma, H., Zhang, S.Y., Ji, W.Q., Tao, Z.L. and Chen, J. (2008) α-CuV2O6 nanowires: Hydro-thermal synthesis and primary lithium battery application. Journal of the American Chemical Society, 130, 5361-5367. |
[13] | Harb, M., Masih, D. and Takanabe, K. (2014) Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials. Physical Chemistry Chemical Physics, 16, 18198-18204. |
[14] | Hoyos, D., Paillaud, J.L. and Guth, J.L. (2004) Synthesis and structure determination of a novel lithium copper vanadate LiCu2VO4(OH)2. Solid State Sciences, 6, 1359-1364. |
[15] | M?ller, A. and Jainski, J. (2008) Synthesis and crystal structure of AgCuVO4. Zeitschrift für Anorganische und Allgemeine Chemie, 634, 1669-1672. |
[16] | Frost, R.L., Palmer, S.J., Cejka, J., Sejkora, J., Plasil, J., Bahfennea, S. and Keeffe, E.C. (2011) A raman spectroscopic study of the different vanadate groups in solid-state compounds-model case: Mineral phases ve-signieite [BaCu3(VO4)2 (OH)2] and volborthite [Cu3V2O7(OH)2?2H2O]. Journal of Raman Spectroscopy, 42, 1701-1710. |
[17] | Zhang, S.Y., Ci, L.J. and Liu, H.R. (2009) Synthesis, characterization, and electrochemical properties of Cu3V2O7 (OH)2?2H2O nanostructures. Journal of Physical Chemistry C, 113, 8624-8629. |
[18] | Larrea, E.S., Mesa, J.L., Pizarro, J.L., Iglesias, M., Rojo, T. and Arriortua, M.I. (2011) M(C6H16N3)2(VO3)4 as heterogeneous catalysts: Study of three new hybrid vanadates of cobalt(II), nickel(II) and copper(II) with 1-(2-aminoethyl)- piperazonium. Dalton Transactions, 40, 12690-12698. |
[19] | Adijanto, L., Padmanabhan, V.B., Kungas, R., Gorte, R.J. and Vohs, J.M. (2012) Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes. Journal of Materials Chemistry, 22, 11396-11402. |
[20] | Forster, J., Rosner, B., Fink, R.H., Nye, L.C., Ivanovic-Burmazovic, I., Kastner, K., Tucher, J. and Streb, C. (2013) Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chemical Science, 4, 418-424. |
[21] | Zhang, S.Y., He, Z.Z., Yang, M., Guo, W.B. and Tang, Y.Y. (2014) Synthesis and magnetic properties of a new polymorph of Cu2(VO4)(OH) with a quasi-2D layer structure. Dalton Transactions, 43, 3521-3527. |
[22] | Wu, C.D., Lu, C.Z., Zhuang, H.H. and Huang, J.S. (2003) Synthesis, crystal structure and characterization of a novel three-dimensional polymer: [Cu4V2(OH)2O8]. European Journal of Inorganic Chemistry, 2867-2871. |
[23] | Hillel, T. and Ein-Eli, Y. (2013) Copper vanadate as promising high voltage cathodes for Li thermal batteries. Journal of Power Sources, 229, 112-116. |
[24] | Cao, J.Q., Wang, X.Y., Tang, A.P., Wang, X., Wang, Y. and Wu, W. (2009) Sol-gel synthesis and electrochemical properties of CuV2O6 cathode material. Journal of Alloys and Compounds, 479, 875-878. |
[25] | Wei, Y.J., Nam, K.W., Chen, G., Ryu, C.W. and Kim, K.B. (2005) Synthesis and structural properties of stoichiometric and oxygen deficient CuV2O6 prepared via co-precipitation method. Solid State Ionics, 176, 2243-2249. |
[26] | Cao, X.Y., Xie, J.G., Zhan, H. and Zhou, Y.H. (2006) Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel. Materials Chemistry and Physics, 98, 71-75. |
[27] | Liang, Y., Liu, P., Li, H.B., Xiao, J. and Yang, G.W. (2012) Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm, 14, 3291-3296. |
[28] | Hu, W, Zhang, X.B., Cheng, Y.L., Wu, Y.M. and Wang, L.M. (2011) Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu0.95V2O5 nanoribbons: High capacity cathode material for rechargeable Li-ion batteries. Chemical Communications, 47, 5250-5252. |
[29] | Hu, W., Du, X.C., Wu, Y.M. and Wang, L.M. (2013) Novel ε-Cu0.95V2O5 hollow microspheres and α-CuV2O6 nanograins: Facile synthesis and application in lithium-ion batteries. Journal of Power Sources, 237, 112-118. |
[30] | Liu, P., Liang, Y., Lin, X.Z., Wang, C.X. and Yang, G.W. (2011) A general strategy to fabricate simple polyoxometalate nanostructures: Electrochemistry-assisted laser ablation in liquid. ACS Nano, 5, 4748-4755. |
[31] | Sakurai, Y., Ohtsuka, H. and Yamaki, J.I. (1988) Rechargeable copper vanadate cathodes for lithium cell. Journal of the Electrochemical Society, 135, 32-36. |
[32] | Takeda, Y., Itoh, K., Kanno, R., Icikaw, T., Imanishi, N. and Yamamoto, O. (1991) Characteristics of brannerite-type CuV2-xMoxO6?(0≤?x≤?1)?cathodes for lithium cells. Journal of the Electrochemical Society, 138, 2566-2571. |
[33] | Gur, I., Fromer, N.A., Geier, M.L. and Alivisatos, A.P. (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310, 462-465. |
[34] | Nordlinder, S., Augustsson, A., Schmitt, T., Guo, J.H., Duda, L.C., Nordgren, J., Gustafsson, T. and Edstr?m, K. (2003) Redox behavior of vanadium oxide nanotubes as studied by X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. Chemistry of Materials, 15, 3227-3232. |