全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

76例乳腺肿瘤超声图像预处理研究
The Research on Preprocessing for the Gray-Scale Ultrasound Breast Tumor Images of 76 Cases

DOI: 10.12677/HJBM.2015.52002, PP. 9-16

Keywords: 医学超声图像P-M斑点噪声
Medical Ultrasound Image P-M Speckle

Full-Text   Cite this paper   Add to My Lib

Abstract:

以76例乳腺肿瘤灰阶超声图像为研究对象,根据医学超声图像的特点及P-M模型的缺点,提出以图像的局部信息确定扩散门限的改进的P-M模型滤波方法,通过采用多种图像预处理算法及上述改进的P-M模型滤波法对76例乳腺肿瘤超声图像进行试验,实验结果显示,改进的P-M模型滤波方法可以更有效的滤除斑点噪声。
This paper mainly focuses on the gray-scale ultrasound breast tumor images. According to the characteristics of ultrasonic image and shortcomings of the P-M model, a modified P-M model filter with local information and spread threshold is proposed. All common pretreatment algorithms are put into experiments and a comparison is made among them. The results show that the modified P-M model filter can more effectively remove the speckle noise.

References

[1]  Hooley, R.J. and Andrejeve, L. and Scoutt, L.M. (2011) Breast cancer screening and problem solving using mammo-graphy ultrasound and magnetic resonance imaging. Ultrasound Quarterly, 27, 23-47.
[2]  曹秋月, 黄敏, 等 (2012) 乳腺癌超声诊断的现状和进展. 临床超声医学杂志, 3, 183-185.
[3]  Athanasiou, A., Tardivon, A., Ollivier, L., Thibault, F., El Khoury, C. and Neuenschwander, S. (2009) How to optimize breast ultrasound. European Journal of Radiology, 69, 6-13.
[4]  张聚, 王陈, 程芸 (2014) 小波与双边滤波的医学超声图像去噪. 中国图像图形学报, 1, 126-132.
[5]  Gupa, N., Swamy, M.N. and Plotkin, E. (2005) Despeckling of medical ultrasound images using data rate adaptive lossy compression. IEEE Transactions on Medical Imaging, 24, 743-754.
[6]  Coupe, P., Hellier, P., Kervrann, C. and Barillot, C. (2009) Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing, 18, 2221-2229.
[7]  Perona, P. and Malik, J. (1990) Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133