全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

普朗尼克F127调控下MnFe2O4纳米粒子的共沉淀制备及其性能表征
Pluronic F127 Regulated Coprecipitation Preparation and Characterization of MnFe2O4 Nanoparticles

DOI: 10.12677/MS.2015.53017, PP. 119-125

Keywords: MnFe2O4纳米粒子,普朗尼克F127,共沉淀法,铁磁性,细胞相容性
MnFe2O4 Nanoparticles
, Pluronic F127, Coprecipitation, Ferromagnetism, Cytocompatibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

MnFe2O4纳米粒子在核磁共振成像和肿瘤磁热疗的应用上具有很大潜力。但是其应用于生物医学领域的主要障碍是难以制备形貌均一、分散性好、磁性能优异且生物相容性良好的MnFe2O4纳米粒子。目的:通过F127调控下的共沉淀法制备粒径均匀且磁性能较好的MnFe2O4纳米粒子,且通过普朗尼克F127的修饰提高其分散性并降低MnFe2O4纳米粒子的细胞毒性。方法:以F127为模版,采用共沉淀法制备MnFe2O4磁性纳米粒。利用X射线衍射(XRD)、透射电子显微镜(TEM)、振动样品磁强计(VSM)、傅立叶变换红外光谱(FT-IR)等对样品的成分、微观结构、形貌和粒径以及磁性能进行表征。通过MTT实验对样品的细胞毒性进行评价。结果:采用普朗尼克F127调控下的共沉淀法成功制备大约50 nm的球形MnFe2O4铁磁性纳米粒子,其比饱和磁化强度为44.8 emu/g,对HUVEC细胞无明显毒性。结论:共沉淀过程中,F127能够控制MnFe2O4纳米粒子的形貌、粒径,从而提高其磁性能,另外还可以降低其细胞毒性。该方法在生物医学应用上具有很大的潜力。
MnFe2O4 nanoparticles have great potentials in Magnetic Resonance Imaging and tumor hyper-thermia. However for biomedical applications, the main challenges would be of great difficulty to synthesize MnFe
References

[1]  Laurent, S., Forge, D., Port, M., et al. (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064-2110.
[2]  Lam, T, Pouliot, P, Avti, P.K., et al. (2013) Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Advances in Colloid and Interface Science, 199-200, 95-113.
[3]  Liu, X.L. and Fan, H.M. (2014) Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications. Current Opinion in Chemical Engineering, 4, 38-46.
[4]  Gupta, A.K. and Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995-4021.
[5]  Gebreel, D., Shalaby, T., Yousef, Y., et al. (2014) Magnetic fluid based on Fe3O4 nanoparticles: Preparation and hyperthermia application. International Journal of Chemical and Applied Biological Sciences, 1, 24.
[6]  Shokrollahi, H. (2013) Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Materials Science & Engineering C, Materials for Biological Applications, 33, 2476-2487.
[7]  Ba?obre-López, M., Pi?eiro, Y., López-Quintela, M.A. and Rivas, J. (2014) Magnetic Nanoparticles for Biomedical Applications. Handbook of Nanomaterials Properties, Springer, 457-493.
[8]  Kim, D.-H., Nikles, D.E. and Brazel, C.S. (2010) Synthesis and characterization of multifunctional chi-tosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials, 3, 4051-4065.
[9]  Alvani, C., Ennas, G., La Barbera, A., et al. (2005) Synthesis and characterization of nanocrystalline MnFe2O4: advances in ther-mochemical water splitting. International Journal of Hydrogen Energy, 30, 1407-1411.
[10]  Zeng, H., Rice, P.M., Wang, S.X., et al. (2004) Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. Journal of the American Chemical Society, 126, 11458-11459.
[11]  Nivaggioli, T., Alexandridis, P., Hatton, T.A., et al. (1995) Fluorescence probe studies of pluronic copolymer solutions as a function of temperature. Langmuir: The ACS Journal of Surfaces and Colloids, 11, 730-737.
[12]  Alexandridis, P. and Hatton, T.A. (1995) Poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96, 1-46.
[13]  Yildirim, A., Demirel, G.B., Erdem, R., et al. (2013) Pluronic polymer capped biocompatible mesoporous silica nanocarriers. Chemical Communications, 49, 9782-9784.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133