A differential-difference Davey-Stewartson
system with self-consistent sources is constructed using the source generation
procedure. We observe how the resulting coupled discrete system reduces to the
identities for determinant by presenting the Gram-type determinant solution and
Casorati-type determinant solution.
References
[1]
Hirota, R. (1977) Nonlinear Partial Difference Equations: I. A Difference Analogue of the Korteweg-de Vries Equation. Journal of the Physical Society of Japan, 43, 1424-1433. http://dx.doi.org/10.1143/JPSJ.43.1424
[2]
Hirota, R. (1977) Nonlinear Partial Difference Equations: II. Discrete-Time Toda Equation. Journal of the Physical Society of Japan, 43, 2074-2078. http://dx.doi.org/10.1143/JPSJ.43.2074
[3]
Hirota, R. (1977) Nonlinear Partial Difference Equations: III. Discrete Sine-Gordon Equation. Journal of the Physical Society of Japan, 43, 2079-2086. http://dx.doi.org/10.1143/JPSJ.43.2079
[4]
Feng, B.F., Inoguchi, J., Kajiwara, K., Maruno, K. and Ohta, Y. (2013) Integrable Discretizations of the Dym Equation. Frontiers of Mathematics in China, 8, 1017-1029. http://dx.doi.org/10.1007/s11464-013-0321-y
[5]
Hu, X.B. and Yu, G.F. (2007) Integrable Discretizations of the (2+1)-Dimensional Sinh-Gordon Equation. Journal of Physics A: Mathematical and Theoretical, 40, 12645-12659. http://dx.doi.org/10.1088/1751-8113/40/42/S10
[6]
Hu, X.B. and Yu, G.F. (2009) Integrable Semi-Discretizations and Full-Discretization of the Two-Dimensional Leznov Lattice. Journal of Difference Equations and Applications, 15, 233-252. http://dx.doi.org/10.1080/10236190802101695
[7]
Gegenhasi, Hu, X.B. and Levi, D. (2006) On a Discrete Davey-Stewartson System. Inverse Problems, 22, 1677-1688. http://dx.doi.org/10.1088/0266-5611/22/5/009
[8]
Tsuchida, T. and Dimakis, A. (2011) On a (2 + 1)-Dimensional Generalization of the Ablowitz-Ladik Lattice and Adiscrete Davey-Stewartson System. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 325206. http://dx.doi.org/10.1088/1751-8113/44/32/325206
[9]
Mel’nikov, V.K. (1983) On Equations for Wave Interactions. Letters in Mathematical Physics, 7, 129-136. http://dx.doi.org/10.1007/BF00419931
[10]
Mel’nikov, V.K. (1990) Integration of the Korteweg-de Vries Equation with a Source. Inverse Problems, 6, 233-246. http://dx.doi.org/10.1088/0266-5611/6/2/007
[11]
Mel’nikov, V.K. (1992) Integration of the Nonlinear Schrodinger Equation with a Source. Inverse Problems, 8, 133-147. http://dx.doi.org/10.1088/0266-5611/8/1/009
[12]
Zeng, Y.B., Ma, W.X. and Lin, R.L. (2000) Integration of the Soliton Hierarchy with Self-Consistent Sources. Journal of Mathematical Physics, 41, 5453-5489. http://dx.doi.org/10.1063/1.533420
[13]
Lin, R.L., Zeng, Y.B. and Ma, W.X. (2001) Solving the KdV Hierarchy with Self-Consistent Sources by Inverse Scattering Method. Physica A: Statistical Mechanics and Its Applications, 291, 287-298. http://dx.doi.org/10.1016/S0378-4371(00)00519-7
[14]
Zeng, Y.B., Ma, W.X. and Shao, Y.J. (2001) Two Binary Darboux Transformations for the KdV Hierarchy with Self-Consistent Sources. Journal of Mathematical Physics, 42, 2113-2128. http://dx.doi.org/10.1063/1.1357826
[15]
Zeng, Y.B., Shao, Y.J. and Ma, W.X. (2002) Integral-Type Darboux Transformation for the mKdV Hierarchy with Self-Consistent Sources. Communications in Theoretical Physics, 38, 641-648. http://dx.doi.org/10.1088/0253-6102/38/6/641
[16]
Xiao, T. and Zeng, Y.B. (2004) Generalized Darboux Transformations for the KP Equation with Self-Consistent Sources. Journal of Physics A: Mathematical and General, 37, 7143-7162. http://dx.doi.org/10.1088/0305-4470/37/28/006
[17]
Liu, X.J. and Zeng, Y.B. (2005) On the Toda Lattice Equation with Self-Consistent Sources. Journal of Physics A: Mathematical and General, 38, 8951-8965. http://dx.doi.org/10.1088/0305-4470/38/41/008
[18]
Hase, Y., Hirota, R., Ohta, Y. and Satsuma, J. (1989) Soliton Solutions of the Mel’nikov Equations. Journal of the Physical Society of Japan, 58, 2713-2720.
[19]
Matsuno, Y. (1991) Bilinear Backlund Transformation for the KdV Equation with a Source. Journal of Physics A: Mathematical and General, 24, L273. http://dx.doi.org/10.1088/0305-4470/24/6/005
[20]
Hu, X.B. (1991) Nonlinear Superposition Formula of the KdV Equation with a Source. Journal of Physics A: Mathematical and General, 24, 5489-5497. http://dx.doi.org/10.1088/0305-4470/24/23/015
[21]
Matsuno, Y. (1990) KP Equation with a Source and Its Soliton Solutions. Journal of Physics A: Mathematical and General, 23, L1235. http://dx.doi.org/10.1088/0305-4470/23/23/009
[22]
Zhang, D.J. (2002) The N-Soliton Solutions for the Modified KdV Equation with Self-Consistent Sources. Journal of the Physical Society of Japan, 71, 2649-2656. http://dx.doi.org/10.1143/JPSJ.71.2649
[23]
Deng, S.F., Chen, D.Y. and Zhang, D.J. (2003) The Multisoliton Solutions of the KP Equation with Self-Consistent Sources. Journal of the Physical Society of Japan, 72, 2184-2192. http://dx.doi.org/10.1143/JPSJ.72.2184
[24]
Zhang, D.J. and Chen, D.Y. (2003) The N-Soliton Solutions of the Sine-Gordon Equation with Self-Consistent Sources. Physica A: Statistical Mechanics and Its Applications, 321, 467-481. http://dx.doi.org/10.1016/S0378-4371(02)01742-9
[25]
Zhang, D.J. (2003) The N-Soliton Solutions of Some Soliton Equations with Self-Consistent Sources. Chaos, Solitons and Fractals, 18, 31-43. http://dx.doi.org/10.1016/S0960-0779(02)00636-7
[26]
Gegenhasi and Hu, X.-B. (2006) On an Integrable Differential-Difference Equation with a Source. Journal of Nonlinear Mathematical Physics, 13, 183-192. http://dx.doi.org/10.2991/jnmp.2006.13.2.3
[27]
Hu, X.B. and Wang, H.Y. (2006) Construction of dKP and BKP Equation with Self-Consistent Sources. Inverse Problems, 22, 1903-1920. http://dx.doi.org/10.1088/0266-5611/22/5/022
[28]
Hirota, R. (2004) Direct Method in Soliton Theory. Cambridge University Press, Cambridge. Edited and Translated by Nagai, A., Nimmo, J. and Gilson, C. (In English)
[29]
Hu, J., Wang, H.Y. and Tam, H.W. (2008) Source Generation of the Davey-Stewartson Equation. Journal of Mathematical Physics, 49, Article ID: 013506. http://dx.doi.org/10.1063/1.2830432