全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Index-p Abelianization Data of p-Class Tower Groups

DOI: 10.4236/apm.2015.55029, PP. 286-313

Keywords: p-Class Groups, p-Principalization Types, p-Class Field Towers, Quadratic Fields, Second p-Class Groups, p-Class Tower Groups, Coclass Graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given a fixed prime number p, the multiplet of abelian type invariants of the p-class groups of all unramified cyclic degree p extensions of a number field K is called its IPAD (index-p abeliani- zation data). These invariants have proved to be a valuable information for determining the Galois group \"\" of the second Hilbert p-class field and the p-capitulation type of K. For p=3 and a number field K with elementary p-class group of rank two, all possible IPADs are given in the complete form of several infinite sequences.

References

[1]  The PARI Group (2014) PARI/GP. Version 2.7.2, Bordeaux.
http://pari.math.u-bordeaux.fr
[2]  Bosma, W., Cannon, J. and Playoust, C. (1997) The Magma Algebra System I: The User Language. Journal of Symbolic Computation, 24, 235-265.
http://dx.doi.org/10.1006/jsco.1996.0125
[3]  Bosma, W., Cannon, J.J., Fieker, C. and Steels, A., Eds. (2015) Handbook of Magma Functions. Edition 2.21, University of Sydney, Sydney.
[4]  The MAGMA Group (2015) MAGMA Computational Algebra System. Version 2.21-2, Sydney.
http://magma.maths.usyd.edu.au
[5]  Mayer, D.C. (2014) Principalization Algorithm via Class Group Structure. Journal de Théorie des Nombres de Bordeaux, 26, 415-464.
[6]  Bush, M.R. and Mayer, D.C. (2015) 3-Class Field Towers of Exact Length 3. Journal of Number Theory, 147, 766-777.
http://arxiv.org/abs/1312.0251
[7]  Artin, E. (1927) Beweis des allgemeinen Reziprozitatsgesetzes. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 5, 353-363. http://dx.doi.org/10.1007/BF02952531
[8]  Artin, E. (1929) Idealklassen in Oberkorpern und allgemeines Reziprozitatsgesetz. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 7, 46-51.
http://dx.doi.org/10.1007/BF02941159
[9]  Mayer, D.C. (2013) The Distribution of Second p-Class Groups on Coclass Graphs. Journal de Théorie des Nombres de Bordeaux, 25, 401-456.
http://dx.doi.org/10.5802/jtnb.842
[10]  Boston, N., Bush, M.R. and Hajir, F. (2014) Heuristics for p-Class Towers of Imaginary Quadratic Fields, with an Appendix by Jonathan Blackhurst. Mathematische Annalen, in Press. http://arxiv.org/abs/1111.4679
[11]  Boston, N. and Leedham-Green, C. (2002) Explicit Computation of Galois p-Groups Unramified at p. Journal of Algebra, 256, 402-413.
http://dx.doi.org/10.1016/S0021-8693(02)00028-5
[12]  Bush, M.R. (2003) Computation of Galois Groups Associated to the 2-Class Towers of Some Quadratic Fields. Journal of Number Theory, 100, 313-325.
http://dx.doi.org/10.1016/S0022-314X(02)00128-2
[13]  Bartholdi, L. and Bush, M.R. (2007) Maximal Unramified 3-Extensions of Imaginary Quadratic Fields and SL2(Z3). Journal of Number Theory, 124, 159-166. http://dx.doi.org/10.1016/j.jnt.2006.08.008
[14]  Boston, N. and Nover, H. (2006) Computing Pro-p Galois Groups. Proceedings of ANTS 2006, Lecture Notes in Computer Science 4076, Springer-Verlag Berlin Heidelberg, Berlin, 1-10.
[15]  Nover, H. (2009) Computation of Galois Groups of 2-Class Towers. Ph.D. Thesis, University of Wisconsin, Madison.
[16]  Mayer, D.C. (2015) Periodic Bifurcations in Descendant Trees of Finite p-Groups. Advances in Pure Mathematics, 5, 162-195.
http://dx.doi.org/10.4236/apm.2015.54020
[17]  Besche, H.U., Eick, B. and O’Brien, E.A. (2002) A Millennium Project: Constructing Small Groups. International Journal of Algebra and Computation, 12, 623-644.
http://dx.doi.org/10.1142/S0218196702001115
[18]  Besche, H.U., Eick, B. and O’Brien, E.A. (2005) The Small Groups Library—A Library of Groups of Small Order. An Accepted and Refereed GAP 4 Package, Available Also in MAGMA.
[19]  Mayer, D.C. (2012) Transfers of Metabelian p-Groups. Monatshefte für Mathematik, 166, 467-495.
[20]  Scholz, A. and Taussky, O. (1934) Die Hauptideale der kubischen Klassenkorper imaginar quadratischer Zahlkorper: Ihre rechnerische Bestimmung und ihr Einflub auf den Klassenkorperturm. Journal für die Reine und Angewandte Mathematik, 171, 19-41.
[21]  Mayer, D.C. (1990) Principalization in Complex S3-Fields. Congressus Numerantium, 80, 73-87.
[22]  Taussky, O. (1970) A Remark Concerning Hilbert’s Theorem 94. Journal für die Reine und Angewandte Mathematik, 239/240, 435-438.
[23]  Mayer, D.C. (2012) The Second p-Class Group of a Number Field. International Journal of Number Theory, 8, 471-505.
[24]  Gamble, G., Nickel, W. and O’Brien, E.A. (2006) ANU p-Quotient—p-Quotient and p-Group Generation Algorithms. An Accepted GAP 4 Package, Available Also in MAGMA.
[25]  The GAP Group (2015) GAP—Groups, Algorithms, and Programming—A System for Computational Discrete Algebra. Version 4.7.7, Aachen, Braunschweig, Fort Collins, St. Andrews.
http://www.gap-system.org
[26]  Ascione, J.A., Havas, G. and Leedham-Green, C.R. (1977) A Computer Aided Classification of Certain Groups of Prime Power Order. Bulletin of the Australian Mathematical Society, 17, 257-274, Corrigendum 317-319, Microfiche Supplement, 320.
[27]  Ascione, J.A. (1979) On 3-Groups of Second Maximal Class. Ph.D. Thesis, Australian National University, Canberra.
[28]  O’Brien, E.A. (1990) The p-Group Generation Algorithm. Journal of Symbolic Computation, 9, 677-698.
http://dx.doi.org/10.1016/S0747-7171(08)80082-X
[29]  Holt, D.F., Eick, B. and O’Brien, E.A. (2005) Handbook of Computational Group Theory. Discrete Mathematics and Its Applications, Chapman and Hall/CRC Press.
http://dx.doi.org/10.1201/9781420035216
[30]  Heider, F.-P. and Schmithals, B. (1982) Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. Journal für die reine und angewandte Mathematik, 336, 1-25.
[31]  Shafarevich, I.R. (1966) Extensions with Prescribed Ramification Points. Publications mathématiques de l’IHéS, 18, 71-95.
[32]  Koch, H. and Venkov, B.B. (1975) über den p-Klassenkorperturm eines imaginar-quadratischen Zahlkorpers. Astérisque, 24-25, 57-67.
[33]  Diaz, F. and Diaz (1973/74) Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1. Séminaire Delange-Pisot-Poitou, No. G15.
[34]  Diaz, F. and Diaz (1978) Sur le 3-rang des corps quadratiques. No. 78-11, Université Paris-Sud, Orsay.
[35]  Buell, D.A. (1976) Class Groups of Quadratic Fields. Mathematics of Computation, 30, 610-623.
[36]  Golod, E.S. and Shafarevich, I.R. (1965) On Class Field Towers. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 28, 261-272.
[37]  Vinberg, E.B. (1965) On a Theorem Concerning the Infinite-Dimensionality of an Associative Algebra. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 29, 209-214.
[38]  Shanks, D. (1976) Class Groups of the Quadratic Fields Found by Diaz y Diaz. Mathematics of Computation, 30, 173-178.
http://dx.doi.org/10.1090/S0025-5718-1976-0399039-9
[39]  Sloane, N.J.A. (2014) The On-Line Encyclopedia of Integer Sequences (OEIS). The OEIS Foundation Inc.
http://oeis.org/
[40]  Fieker, C. (2001) Computing Class Fields via the Artin Map. Mathematics of Computation, 70, 1293-1303.
[41]  Mayer, D.C. (2015) Index-p Abelianization Data of p-Class Tower Groups. Proceedings of the 29th Journées Arithmé-tiques, Debrecen, 6-10 July 2015, in Preparation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133