全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Classifying Exact Traveling Wave Solutions to the Coupled-Higgs Equation

DOI: 10.4236/jamp.2015.33041, PP. 279-284

Keywords: Traveling Wave Solution, Complete Discrimination System for Polynomials, The Coupled-Higgs Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

By the complete discrimination system for polynomials, we classify exact traveling wave solutions to the Coupled-Higgs Equation.

References

[1]  Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Non-Linear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511623998
[2]  Xiang, C.H. (2011) Jacobi Elliptic Function Solutions for (2 + 1) Dimensional Boussinesq and Kadomtsev-Petviashvili Equation. Applied Mathematics, 2, 1313-1316.
http://dx.doi.org/10.4236/am.2011.211183
[3]  Khalfallah, M. (2008) Exact Traveling Wave Solutions of the Boussinesq-Burgers Equation. Mathematical and Computer Modelling, 49, 666-671.
http://dx.doi.org/10.1016/j.mcm.2008.08.004
[4]  Jabbari, A., Kheiri, H. and Bekir, A. (2011) Exact Solutions of the Coupled Higgs Equation and the Maccari System Using He’s Semi-Inverse Method and (G’/G)-Expansion Method. Computers and Mathematics with Applications, 62, 2177-2186.
http://dx.doi.org/10.1016/j.camwa.2011.07.003
[5]  Liu, C.S. (2010) Applications of Complete Discrimination System for Polynomial for Classifications of Traveling Wave Solutions to Nonlinear Differential Equations. Computer Physics Communications, 181, 317-324.
http://dx.doi.org/10.1016/j.cpc.2009.10.006
[6]  Wang, C.Y. and Du, X.H. (2013) Classifying Traveling Wave Solutions to the Zhiber-Shabat Equation. Journal of Applied Mathematics and Physics, 1, 1-3.
http://dx.doi.org/10.4236/jamp.2013.12001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133