We will analyse perturbative quantum gravity on de Sitter spacetime. We
propose a new type of inner product for modes on de Sitter spacetime. This
inner product is used to mode decompose perturbations of the metric on de
Sitter spacetime. Using this inner product, it is possible to calculate the
two-point function for perturbative quantum gravity on de Sitter spacetime.
This two- point function will be written in terms of a mode sum for various
modes on de Sitter spacetime.
References
[1]
Faizal, M. (2011) Spontaneous Breaking of Lorentz Symmetry by Ghost
Condensation in Perturbative Quantum Gravity. Journal of Physics A: Mathematical
and Theoretical, 44, Article
ID: 402001. http://dx.doi.org/10.1088/1751-8113/44/40/402001
Fabbri, L. (2011) From the Torsion Tensor for Spinors to the Weak
Forces for Leptons. International Journal
of Theoretical Physics, 50, 3616-3620. http://dx.doi.org/10.1007/s10773-011-0870-3
[4]
Kugo, T. and Ojima, I. (1978) Subsidiary Conditions and Physical S-Matrix Unitarity
in Indefinite-Metric
Quantum Gravitation Theory. Nuclear
Physics B, 144,
234-252. http://dx.doi.org/10.1016/0550-3213(78)90504-7
[5]
Nishijima, K. and Okawa, M. (1978) The Becchi-Rouet-Stora Transformation for the Gravitational
Field. Progress
of Theoretical Physics, 60, 272-283. http://dx.doi.org/10.1143/PTP.60.272
[6]
Nakanishi, N. and Ojima, I. (1990) Covariant Operator Formalism of Gauge Theories
and Quantum Gravity. World Scientific, The
Singapore City, 298. http://dx.doi.org/10.1142/0362
[7]
Lesov, A. (2009) The Weak Force: From Fermi to Feynman. arXiv
preprint arXiv:0911.0058.
Faizal, M. and Kruglov, S.I. (2014) Deformation of the Dirac Equation. arXiv
preprint arXiv:1406.2653.
[11]
Takook, M.V. (2002) Negative Norm States in de
Sitter Space and QFT without Renormalization Procedure. International Journal of Modern Physics E, 11, 509-518. http://dx.doi.org/10.1142/S0218301302001071
[12]
Ali, A.F., Faizal, M. and Majumder, B. (2015) Absence of an Effective Horizon for Black
Holes in Gravity’s Rainbow. EPL (Europhysics Letters), 109, Article ID: 20001.
[13]
Metsaev,
R.R. (2014) The
BRST-Invariant Effective Action of Shadows, Conformal Fields, and the AdS/CFT Correspondence. Theoretical and Mathematical Physics,
181, 1548-1565.
[14]
Moshin, P.Yu. and Reshetnyak, A.A. (2015) Int.
J. Mod. Phys. A, 30, Article ID: 1550021
[15]
MacDonald,
J. and Mullan, D.J. (2009) Big Bang Nucleosynthesis: The Strong Nuclear Force
Meets the Weak Anthropic Principle. Physical
Review D, 80, Article ID: 043507.
[16]
Sinev,
A.M. (2008) On a Quantum Model of a Laser-Interferometer Measuring a Weak
Classical Force.
arXiv:0806.3212
[17]
Pagliarone, C. (2006) Results
on QCD Physics from the CDF-II Experiment. arXiv:hep-ex/0612037
Izumi, K. and Tanaka,
T. (2009) Particle Production in Models with Helicity-0 Graviton Ghost in de Sitter Spacetime. Progress of Theoretical Physics, 121,
427-436. http://dx.doi.org/10.1143/PTP.121.427
Batalin, I.A. and Vilkovisky, G.A. (1983) Quantization of Gauge
Theories with Linearly Dependent Generators. Physical Review D, 28, Article ID: 2567. http://dx.doi.org/10.1103/PhysRevD.28.2567
[23]
Bizdadea, C. and Saliu, S.O. (1998)
Irreducible Antifield Formalism for Reducible Constrained
Hamiltonian Systems. Journal of Physics A: Mathematical and General, 31, 8805. http://dx.doi.org/10.1088/0305-4470/31/44/009
[24]
Bizdadea, C., Negru, I. and Saliu, S.O.
(1999) Irreducible Antifield BRST-Anti-BRST Formalism for Reducible Gauge Theories. International Journal of Modern Physics A, 14, 359-386. http://dx.doi.org/10.1142/S0217751X9900018X
Faizal, M. (2012)
Noncommutativity and Non-Anticommutativity Perturbative Quantum Gravity. Modern Physics Letters A, 27,
Article ID: 1250075. http://dx.doi.org/10.1142/S0217732312500757
Faizal, M. and Smith, D.J. (2012)
Supersymmetric Chern-Simons Theory in the Presence of a Boundary. Physical Review D, 85, c105007. http://dx.doi.org/10.1103/PhysRevD.85.105007
[32]
Mader, V., Schaden, M., Zwanziger, D. and
Alkofer, R. (2014) Infrared Saturation and Phases of Gauge Theories with BRST
Symmetry. The European Physical Journal C,
74, 2881. http://dx.doi.org/10.1140/epjc/s10052-014-2881-8
Bianchi, M.S., Leoni, M. and Penati, S.
(2012) An All Order Identity between ABJM and Mathcal N = 4 SYM Four- Point Amplitudes. Journal of High Energy Physics, 2012, 45. http://dx.doi.org/10.1007/JHEP04(2012)045
Okuyama, K. (2012) A Note on the Partition
Function of ABJM Theory on S3. Progress of Theoretical Physics, 127, 229-242. http://dx.doi.org/10.1143/PTP.127.229
[39]
Faizal, M. (2012) Gauge and Supersymmetric
Invariance of a Boundary Bagger-Lambert-Gustavsson Theory. Journal of High Energy Physics, 2012, 17. http://dx.doi.org/10.1007/JHEP04(2012)017
Golterman, M. and Zimmerman, L. (2005)
Masslessness of Ghosts in Equivariantly Gauge-Fixed Yang-Mills Theories. Physical
Review D, 71, Article ID: 117502.
http://dx.doi.org/10.1103/PhysRevD.71.117502
Lee, J.C. (1998) SO(2, C) invariant Discrete
Gauge States in Liouville Gravity Coupled to Minimal Conformal Matter. The European Physical Journal C-Particles
and Fields, 1, 739-741.
Kapustin, A. and Li, Y. (2005) Open-String
BRST Cohomology for Generalized Complex Branes. Advances in Theoretical and Mathematical Physics, 9, 559-574. http://dx.doi.org/10.4310/ATMP.2005.v9.n4.a2
[55]
Faizal, M. (2013) Deformed Super-Yang-Mills
in Batalin-Vilkovisky Formalism. International
Journal of Theoretical Physics, 52, 392-403. http://dx.doi.org/10.1007/s10773-012-1344-y
Malik, R.P. (2004) Time-Space
Noncommutativity and Symmetries for a Massive Relativistic Particle.
arXiv:hep-th/0412333
[59]
Faizal, M. (2012) The BV
Formalization of Chern-Simons Theory on Deformed Superspace. Communications in Theoretical Physics, 58,
704. http://dx.doi.org/10.1088/0253-6102/58/5/14
Huang, W.H. (2011) M2-KK6 System in ABJM
Theory: Fuzzy S3 and
Wrapped KK6. arXiv:1107.2030
[63]
Faizal, M. and Khan, M. (2011) A Superspace
Formulation of the BV Action for Higher Derivative Theories. The European Physical Journal C-Particles
and Fields, 71, 1603. http://dx.doi.org/10.1140/epjc/s10052-011-1603-8
[64]
Liu, J.T. and Zhao, Z. (2011) A Holographic
C-Theorem for Higher Derivative Gravity. arXiv:1108.5179
[65]
Fontanini, M. and Trodden,
M. (2011) Tackling Higher Derivative Ghosts with the Euclidean Path Integral. Physical Review D, 83, Article ID:
103518. http://dx.doi.org/10.1103/PhysRevD.83.103518
Ohkuwa, Y. (1998) Third Quantization of Kaluzaklein
Cosmology and Compactification. International
Journal of Modern Physics A, 13, 4091-4100. http://dx.doi.org/10.1142/S0217751X98001918
[70]
Faizal, M. (2012) Multiverse in the Third
Quantized Horavalifshitz Theory of Gravity. Modern
Physics Letters A, 27, Article
ID: 1250007. http://dx.doi.org/10.1142/S0217732312500071
Bonzom, V. (2011) Spin Foam Models and the
Wheeler-DeWitt Equation for the Quantum 4-Simplex. Physical Review D, 84, Article ID: 024009. http://dx.doi.org/10.1103/PhysRevD.84.024009
Chowdhury, D., Raju, S., Sachdev, S., Singh,
A. and Strack, P. (2013) Multipoint Correlators of Conformal Field Theories: Implications for Quantum Critical Transport. Physical Review B, 87, Article ID:
085138. http://dx.doi.org/10.1103/PhysRevB.87.085138
[76]
Singh, S., Ganguly, C. and Padmanabhan, T.
(2013) Quantum Field Theory in de Sitter and Quaside Sitter Spacetimes Revisited. Physical Review D, 87, Article ID:
104004. http://dx.doi.org/10.1103/PhysRevD.87.104004
[77]
Faizal, M., Ali, A.F. and Nassar, A. (2014)
AdS/CFT Correspondence beyond Its Supergravity Approximation.
arXiv:1405.4519
[78]
Faizal, M. (2015)
Consequences of Deformation of the Heisenberg Algebra. International Journal of Geometric Methods in Modern Physics, 12, Article ID:
1550022.
[79]
Takook, M.V. (2014) Quantum Field Theory in de Sitter Universe: Ambient Space Formalism. arXiv:1403.1204
[80]
Faizal,
M. (2014) Multiverse in the Third Quantized Formalism. Communications in Theoretical Physics, 62, 697.
Ali, A.F., Faizal, M. and Majumder, B. (2015)
Absence of an Effective Horizon for Black Holes in Gravity’s Rainbow. EPL (Europhysics
Letters), 109, Article ID: 20001. http://dx.doi.org/10.1209/0295-5075/109/20001
[88]
Faizal, M. (2014) Deformation of the Wheeler-DeWitt
Equation. International Journal of Modern
Physics A, 29, Article ID: 1450106. http://dx.doi.org/10.1142/S0217751X14501061
[89]
Awad, A. and Ali, A.F. (2014) Minimal Length,
Friedmann Equations and Maximum Density. Journal
of High Energy Physics, 2014, 93. http://dx.doi.org/10.1007/JHEP06(2014)093
[90]
Faizal, M. (2014) Absence of Black Holes
Information Paradox in Group Field Cosmology. International Journal of Geometric Methods in Modern Physics, 11, Article ID: 1450010. http://dx.doi.org/10.1142/S0219887814500108
[91]
Faizal, M. and Majumder, B. (2014)
Incorporation of Generalized Uncertainty Principle into Lifshitz Field
Theories.
arXiv:1408.3795
[92]
Wald,
R.M., Ed. (1994) Quantum Field
Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago
Press, Chicago.
[93]
Faizal, M. and Awad,
A. (2015) Four Dimensional Supersymmetric Theories in Presence of a Boundary.
arXiv:1502.07717
[94]
Das, S., Robbins, M.P. and Walton, M.A. (2014) Generalized
Uncertainty Principle Corrections to the Simple Harmonic Oscillator in Phase
Space. arXiv:1412.6467
[95]
Balasubramanian, V., Das, S. and Vagenas, E.C. (2014)
Generalized Uncertainty Principle and Self-Adjoint Operators.
arXiv:1404.3962
[96]
Majumder, B. (2013) Singularity
Free Rainbow Universe. International
Journal of Modern Physics D, 22.
[97]
Majumder, B. (2013) Quantum Rainbow
Cosmological Model with Perfect Fluid. International
Journal of Modern Physics D, 22, Article ID: 1350079. http://dx.doi.org/10.1142/S021827181350079X
[98]
Faizal, M., Khalil, M.M. and Das, S. (2014)
Time Crystals from Minimum Time Uncertainty. arXiv:1501.03111
[99]
Gangopadhyay,
S., Dutta, A. and Faizal, M. (2015) Constraints on the Generalized Uncertainty
Principle from Black Hole Thermodynamics. arXiv:1501.01482
[100]
Faizal, M. and
Tsun, T.S. (2014) Supersymmetric Duality in Superloop Space. arXiv:1412.7594
[101]
Faizal,
M., Ali, A.F. and Das, S. (2014) Discreteness of Time in the Evolution of the
Universe. arXiv:1411.5675
[102]
Pramanik, S., Faizal, M., Moussa, M. and Ali, A.F.
(2014) The Path Integral Quantization Corresponding to the Deformed Heisenberg
Algebra. arXiv:1411.4979
[103]
Faizal, M. and Khalil, M.M. (2014) GUP-Corrected Thermodynamics
for All Black Objects and the Existence of Remnants. arXiv:1411.4042
[104]
Ali,
A.F., Faizal, M. and Khalil, M.M. (2015) Absence of Black Holes at LHC Due to Gravity’s
Rainbow. Physics Letters B, 743, 295-300.
[105]
Ali, A.F., Faizal, M. and Khalil, M.M. (2014)
Remnants of Black Rings from Gravity’s Rainbow. Journal
of High Energy Physics, 2014, 159. http://dx.doi.org/10.1007/JHEP12(2014)159
[106]
Ali, A.F., Faizal, M. and Khalil, M.M. (2015)
Remnant for All Black Objects Due to Gravity’s Rainbow. Nuclear Physics B, 894,
341-360.
[107]
Majumder, B. and Sen,
S. (2012) Do the Modified Uncertainty Principle and Polymer Quantization Predict Same Physics? Physics Letters B, 717, 291-294. http://dx.doi.org/10.1016/j.physletb.2012.09.035