全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Argument Estimates of Multivalent Functions Involving a Certain Fractional Derivative Operator

DOI: 10.4236/apm.2015.52011, PP. 88-92

Keywords: Multivalent Analytic Functions, Argument, Integral Operator, Fractional Derivative Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

The object of the present paper is to investigate various argument results of analytic and multivalent functions which are defined by using a certain fractional derivative operator. Some interesting applications are also considered.

References

[1]  Srivastava, H.M. and Buschman, R.G. (1992) Theory and Applications of Convolution Integral Equations. Kluwer Academic Publishers, Dordrecht, Boston and London.
[2]  Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integral and Derivatives, Theory and Applications. Gordon and Breach, New York, Philadelphia, London, Paris, Montreux, Toronto and Melbourne.
[3]  Raina, R.K. and Srivastava, H.M. (1996) A Certain Subclass of Analytic Functions Associated with Operators of Fractional Calculus. Computers & Mathematics with Applications, 32, 13-19.
http://dx.doi.org/10.1016/0898-1221(96)00151-4
[4]  Raina, R.K. and Choi, J.H. (2002) On a Subclass of Analytic and Multivalent Functions Associated with a Certain Fractional Calculus Operator. Indian Journal of Pure and Applied Mathematics, 33, 55-62.
[5]  Srivastava, H.M. and Aouf, M.K. (1992) A Certain Fractional Derivative Operator and Its Applications to a New Class of Analytic and Multivalent Functions with Negative Coefficients. I and II. Journal of Mathematical Analysis and Applications, 171, 1-13.
[6]  Lashin, A.Y. (2004) Applications of Nunokawa’s Theorem. Journal of Inequalities in Pure and Applied Mathematics, 5, 1-5. Art. 111.
[7]  Goyal, S.P. and Goswami, P. (2010) Argument Estimate of Certain Multivalent Analytic Functions Defined by Integral Operators. Tamsui Oxford Journal of Mathematical Sciences, 25, 285-290.
[8]  Bernardi, S.D. (1969) Convex and Starlike Univalent Functions. Transaction of the American Mathematical Society, 135, 429-446. http://dx.doi.org/10.1090/S0002-9947-1969-0232920-2
[9]  Libera, R.J. (1965) Some Classes of Regular Univalent Functions. Proceedings of the American Mathematical Society, 16, 755-758. http://dx.doi.org/10.1090/S0002-9939-1965-0178131-2
[10]  Srivastava, H.M. and Owa, S. (Eds.) (1992) Current Topics in Analytic Function Theory. World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133