全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lipase Immobilized on Magnetic Nanoparticles: A New Tool for Synthesis of Disulphide Compounds

DOI: 10.4236/gsc.2015.51004, PP. 25-30

Keywords: Magnetic Nanoparticles, Lipases, Oxidative Coupling, Disulphide Compounds, Antimicrobial

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study describes chemo-enzymatic synthesis of organic disulphide compounds. The reaction was initiated by hydrolysis of thiol acetates using hydrolytic enzyme lipase (PPL) immobilized on to magnetic nanoparticles and subsequent formation of organic disulphide compounds. Lipase was immobilized on to the magnetic nanoparticles by co-precipitation method via epichlorohydrin chitosan cross-linking, under mild and eco-friendly conditions. The immobilized lipase enzyme exhibited broad range of substrate specificity in synthesizing disulphide compounds, which involves both intra and inter-molecular disulphide bond formation under anaerobic conditions. The disulphide compounds synthesized also show a promising antimicrobial activity.

References

[1]  James, P.T., Cui, R.W., Wen, L and Jing, W.Z. (1991) Disulfide Bond Formation in Peptides by Dimethyl Sulfoxide. Scope and Applications. Journal of the American Chemical Society, 113, 6657-6662.
http://dx.doi.org/10.1021/ja00017a044
[2]  Zhengkai, L., Fang, K., Hang, D., Hualong, X., Haifeng, X and Xiangge, Z. (2013) Synthesis of Disulfides and Diselenides by Copper-Catalyzed Coupling Reactions in Water. Organic & Biomolecular Chemistry, 11, 2943-2946.
http://pubs.rsc.org/en/content/articlelanding/2013/ob/c3ob40464a
http://dx.doi.org/10.1039/c3ob40464a
[3]  Rudolf, M., Stephan, K., Thomas, L., Hanno, L., Thomas, E. and Bernd, G. (1984) Applications of Synthetic Peptides. Angewandte Chemie, 24, 719-727.
http://onlinelibrary.wiley.com/doi/10.1002/anie.198507193/pdf
[4]  Carolyn, S.S. and Chris A.K. (2002) Formation and Transfer of Disulphide Bonds in Living Cells. Nature Reviews Molecular Cell Biology, 3, 836-847.
http://www.nature.com/nrm/journal/v3/n11/abs/nrm954.html
http://dx.doi.org/10.1038/nrm954
[5]  Leena, K., Pankaj, K., Chandramukhi, S.P. and Siva, S.P. (2013) Synthesis of Various S-S Linked Symmetric Bisazaheterocycles: A Review. Mini-Reviews in Organic Chemistry, 10, 268-280.
http://benthamscience.com/journal/abstracts.php?journalID=mroc&articleID=113519
http://dx.doi.org/10.2174/1570193X11310030006
[6]  Wilkes, B.C., Hruby, V.J., Castrucci, A.M., Sherbrooke, W.C. and Hadley, M.E. (1984) Synthesis of a Cyclic Melanotropic Peptide Exhibiting both Melanin-Concentrating and -Dispersing Activities. Science, 224, 1111-1113.
http://www.sciencemag.org/content/224/4653/1111.abstract
[7]  Hiram, F. G. (1997) Protein Disulfide Isomerase and Assisted Protein Folding. The Journal of Biological Chemistry, 272, 29399-29402. http://www.jbc.org/content/272/47/29399
http://dx.doi.org/10.1074/jbc.272.47.29399
[8]  Harshadas, M. (1993) An Efficient and Mild Cleavage of Thiol Acetate with Clayfen in the Absence of Solvent. Tetrahedron Letters, 34, 2521-2522.
http://www.sciencedirect.com/science/article/pii/S0040403900604574
http://dx.doi.org/10.1016/S0040-4039(00)60457-4
[9]  Szajewski, R.P and Whitesides, G.M. (1980) Rate Constants and Equilibrium Constants for Thiol-Disulfide Interchange Reactions Involving Oxidized Gluthathione. Journal of the American Chemical Society, 102, 2011-2026.
http://dx.doi.org/10.1021/ja00526a042
[10]  Ayodele, E.T., Olajire, A.A., Amuda, O.S. and Oladoye, S.O. (2003) Synthesis and Fungicidal Activity of Acetyl Substituted Benzyl Disulfides. Bulletin of the Chemical Society of Ethiopia, 17, 53-60.
http://www.readcube.com/articles/10.4314/bcse.v17i1.61731
[11]  Field, L. and Oae, S. (Ed.) (1977) Organic Chemistry of Sulfur. Plenum, London, 205.
[12]  Sato, T., Otera, J. and Nozaki, H. (1990) Activation and Synthetic Applications of Thiostannanes. Efficient Conversion of Thiol Acetates into Disulfides. Tetrahedron Letters, 31, 3595-3596.
http://www.sciencedirect.com/science/article/pii/S0040403900944514
http://dx.doi.org/10.1016/S0040-4039(00)94451-4
[13]  Anthony, P.B., John, A.M., Christopher, W.P and Nicholas, F.W. (1993) Radical-Induced Fragmentations of Ketoepoxides. Tetrahedron, 49, 10643-10654.
http://www.sciencedirect.com/science/article/pii/S0040402001815544
http://dx.doi.org/10.1016/S0040-4020(01)81554-4
[14]  Bhaskar, R.A., Rehman, H., Krishnakumari, B. and Yadav, J.S. (1994) Lipase Catalysed Kinetic Resolution of Racemic (±) 2,2-dimethyl-3-(2-methyl-1-propenyl)-cyclopropane Carboxyl Esters. Tetrahedron Letters, 35, 2611-2614.
http://www.sciencedirect.com/science/article/pii/S0040403900771863
http://dx.doi.org/10.1016/S0040-4039(00)77186-3
[15]  Yadav, J.S., Bhaskar, R.A., Ravindra, R.Y. and Venkata, R.R.K. (1997) Enzymatic Resolution of (±)-Cis-3-(2,2-dic- hloro-3,3,3-trifluoropropyl)-2,2-dimethylcyclopropane Carboxylate. Tetrahedron: Asymmetry, 8, 2291-2294.
http://www.sciencedirect.com/science/article/pii/S0957416697002516
http://dx.doi.org/10.1016/S0957-4166(97)00251-6
[16]  Tomasz, S., Marta, Z.B and Michal, P.M. (2013) Lipase-Immobilized Magnetic Chitosan Nanoparticles for Kinetic Resolution of (R,S)-Ibuprofen. Journal of Molecular Catalysis B: Enzymatic, 94, 7-14.
http://www.sciencedirect.com/science/article/pii/S1381117713001070
http://dx.doi.org/10.1016/j.molcatb.2013.04.008
[17]  Xun, E.-N., Lv, X.-L., Kang, W., Wang, J.-X., Zhang, H., Wang, L. and Wang, Z. (2012) Immobilization of Pseudomonas fluorescens Lipase onto Magnetic Nanoparticles for Resolution of 2-Octanol. Applied Biochemistry and Biotechnology, 168, 697-707. http://link.springer.com/article/10.1007%2Fs12010-012-9810-9
http://dx.doi.org/10.1007/s12010-012-9810-9
[18]  Bayramoglu, G. and Arica, M.Y. (2008) Preparation of Poly(glycidylmethacrylate-methylmethacrylate) Magnetic Beads: Application in Lipase Immobilization. Journal of Molecular Catalalysis B: Enzymatic, 55, 76-83.
http://www.sciencedirect.com/science/article/pii/S1381117708000544
http://dx.doi.org/10.1016/j.molcatb.2008.01.012
[19]  Zhang, D.H., Yuwen, L.X., Xie, Y.L., Wei, L. and Li, X.B. (2012) Improving Immobilization of Lipase onto Magnetic Microspheres with Moderate Hydrophobicity/Hydrophilicity. Colloids and Surfaces B: Biointerfaces, 89, 73-78.
http://www.sciencedirect.com/science/article/pii/S0927776511005194
http://dx.doi.org/10.1016/j.colsurfb.2011.08.031
[20]  Laila, H.A., Rafat, M.E., Lobna, A.E.N., Ahmed, M.A., Mohamed, I. and Amin, A.S. (2014) Metal Based Pharmacologically Active Agents: Synthesis, Structural Characterization, Molecular Modeling, CT-DNA Binding Studies and in Vitro Antimicrobial Screening of Iron(II) Bromosalicylidene Amino Acid Chelates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 366-378.
http://www.sciencedirect.com/science/article/pii/S1386142513008044
http://dx.doi.org/10.1016/j.saa.2013.07.056
[21]  Carl, R.J. (1998) Biotransformations in the Synthesis of Enantiopure Bioactive Molecules. Accounts of Chemical Research, 31, 333-341. http://dx.doi.org/10.1021/ar970013q
[22]  Barry, M.T. (1978) a-Sulfenylated Carbonyl Compounds in Organic Synthesis. Chemical Reviews, 78, 363-382.
http://dx.doi.org/10.1021/cr60314a002
[23]  Alban, C., Rahul, A.W., Srijit, B., Andreas, O., Per, J.R.S. and Joseph, S.M.S. (2014) One-Pot Synthesis of Keto Thioethers by Palladium/Gold-Catalyzed Click and Pinacol Reactions. Organic Letters, 16, 5556–5559.
http://dx.doi.org/10.1021/ol502553p
[24]  Scott, E.D., Sergio, R., Matthew, P.W. and Hao, W. (2014) Catalytic, Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes. Journal of the American Chemical Society, 136, 13016-13028.
http://dx.doi.org/10.1021/ja506133z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133