A compost of vegetable waste and Posidonia oceanica mixture (70?:?30% vol?:?vol) was tested in vitro and in vivo for its efficacy against Fusarium oxysporum f.sp radicis-lycopersici (Forl), the causal agent of Fusarium wilt of Tomato (Lycopersicon esculentum cv. chourouk).The incorporation of non-sterilized VPC in the culture medium showed potent antifungal activity against Forl and complete inhibition of mycelium growth was observed for all the tested compost rates (0.5, 1, 2, 4, 6, 8, 10, 15 and 20%). However, only the highest rates (15 and 20%) of a sterilized suspension of VPC were effective in preventing mycelial growth. Nine indigenous bacterial strains isolated from VPC exhibited antagonism against Forl. Based on 16S rDNA sequence analysis, the isolates were assigned to Bacillus sphaericus (B12 and BS2), Pseudomonas putida PPS7 and Burkholderia gladioli BuC16. Under green house condition, seed inoculation by B12, BS2, PP7 and BuC16 strains protected significantly tomato against Fusarium oxysporum f.sp radicis-lycopersici (Forl) attacks. 1. Introduction During the last decades, various studies in Tunisia investigated the effects of organic composts as nutrient-rich amendments to correct mineral deficiencies of soils in a semiarid climate [1], In this context, we have conducted some studies, aimed to exploit the ability of Municipal Solid Waste (MSW) as an organic feedstock to be transformed into compost as well as the mineralization of MSW when added to soil [1–3]. The evolution of microbial biomass was studied by [4, 5]. Application of composted Municipal Solid Waste Compost (MSWC) can lead to addition of potentially toxic heavy metals to Tunisian soils [6]. Some compost may also contaminate the soil with aflatoxins [7]. Other sources of organic matter could be used as alternatives to MSWC. In Tunisia vegetable garden waste was not considered for compost production. Also, the use of compost as a biocontrol agent able to limit some plant disease has not been reported from Tunisia. It is well known that compost offers a disease control alternative to fungicides [8]. The use of composts to suppress soil-borne plant pathogens has been extensively reviewed by several authors [9]. Different mechanisms have been postulated to control plant diseases by compost application such as competition for nutrients, antibiotic production by beneficial micro-organisms, activation of disease-resistance genes in plants [10], triggering systemically acquired resistance mechanisms [11] and compost obtained from heterogeneous vegetable wastes [12]. Pascual et al. [13]
References
[1]
N. Jedidi, A. Hassen, O. Van Cleemput, and A. et M'hiri, “Contribution of organic amendments to nitrogenous fertilization of ray grass,” Water Waste and Environmental Research, vol. 64, pp. 21–34, 2001.
[2]
N. Saidi, M. Chérif, N. Jedidi et al., “Evolution of biochemical parameters during composting of various wastes compost,” American Journal of Environmental Sciences, vol. 4, no. 4, pp. 333–341, 2008.
[3]
N. Saidi, S. Kouki, F. M’hiri et al., “Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition,” Journal of Environmental Sciences, vol. 21, no. 10, pp. 1452–1458, 2009.
[4]
O. Bouzaiane, H. Cherif, N. Saidi, N. Jedidi, and A. Hassen, “Effects of municipal solid waste compost application on the microbial biomass of cultivated and non-cultivated soil in a semi-arid zone,” Waste Management and Research, vol. 25, no. 4, pp. 334–342, 2007.
[5]
H. Cherif, H. Ouzari, M. Marzorati et al., “Bacterial community diversity assessment in municipal solid waste compost amended soil using DGGE and ARISA fingerprinting methods,” World Journal of Microbiology and Biotechnology, vol. 24, no. 7, pp. 1159–1167, 2008.
[6]
M. Yoshida, N. Jedidi, H. Hamdi, F. Ayari, A. Hassen, and A. M'Hiri, “Magnetic susceptibility variation of MSW compost-amended soils: in-situ method for monitoring heavy metal contamination,” Waste Management and Research, vol. 21, no. 2, pp. 155–160, 2003.
[7]
I. Déportes, S. Krivobok, F. Seigle-Murandi, and D. Zmirou, “Aflatoxins in municipal solid wastes compost? A first answer,” Journal of Agricultural and Food Chemistry, vol. 45, no. 7, pp. 2788–2792, 1997.
[8]
T. J. J. De Ceuster and H. A. J. Hoitink, “Prospects for composts and biocontrol agents as substitutes for methyl bromide in biological control of plant diseases,” Compost Science and Utilization, vol. 7, no. 3, pp. 6–15, 1999.
[9]
F. Suárez-Estrella, C. Vargas-García, M. J. López, C. Capel, and J. Moreno, “Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis,” Crop Protection, vol. 26, no. 1, pp. 46–53, 2007.
[10]
H. A. J. Hoitink and M. J. Boehm, “Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon,” Annual Review of Phytopathology, vol. 37, pp. 427–446, 1999.
[11]
B. Pharand, O. Carisse, and N. Benhamou, “Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato,” Phytopathology, vol. 92, no. 4, pp. 424–438, 2002.
[12]
R. Mandelbaum and Y. Hadar, “Effects of available carbon source on microbial activity and suppression of Pythium aphanidermatum in compost and peat container media,” Phytopathology, vol. 80, pp. 794–804, 1990.
[13]
J. A. Pascual, T. Hernandez, C. Garcia, F. A. A. M. De Leij, and J. M. Lynch, “Long-term suppression of Pythium ultimum in arid soil using fresh and composted municipal wastes,” Biology and Fertility of Soils, vol. 30, no. 5-6, pp. 478–484, 2000.
[14]
T. L. Widmer, J. H. Graham, and D. J. Mitchell, “Composted municipal solid wastes promote growth of young citrus trees infested with Phytophthora nicotianae,” Compost Science and Utilization, vol. 7, no. 2, pp. 6–16, 1999.
[15]
G. Tuitert, M. Szczech, and G. J. Bollen, “Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste,” Phytopathology, vol. 88, no. 8, pp. 764–773, 1998.
[16]
F. Suárez-Estrella, M. C. Vargas-García, M. J. López, and J. Moreno, “Survival of Fusarium oxysporum f.sp. melonis on plant waste,” Crop Protection, vol. 23, no. 2, pp. 127–133, 2004.
[17]
G. E. S. J. Hardy and K. Sivasithamparam, “Effects of sterile and non-sterile leachates extracted from composted eucalyptus bark and pine-bark container media on Phytophthora spp,” Soil Biology and Biochemistry, vol. 23, no. 1, pp. 25–30, 1991.
[18]
C. Borrero, J. Ordovás, M. I. Trillas, and M. Avilés, “Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by biolog,” Soil Biology and Biochemistry, vol. 38, no. 7, pp. 1631–1637, 2006.
[19]
L. M. Manici, F. Caputo, and V. Babini, “Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems,” Plant and Soil, vol. 263, no. 1-2, pp. 133–142, 2004.
[20]
D. C. Naseby, J. A. Pascual, and J. M. Lynch, “Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities,” Journal of Applied Microbiology, vol. 88, no. 1, pp. 161–169, 2000.
[21]
K. Czaczyk, B. Stachowiak, K. Trojanowska, and K. Gulewicz, “Antifungal activity of Bacillus sp. Isolated from compost,” Folia Microbiologica, vol. 45, no. 6, pp. 552–554, 2000.
[22]
M. S. Krause, T. J. J. De Ceuster, S. M. Tiquia, F. C. Michel, L. V. Madden, and H. A. J. Hoitink, “Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish,” Phytopathology, vol. 93, no. 10, pp. 1292–1300, 2003.
[23]
E. Erhart, K. Burian, W. Hartl, and K. Stich, “Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds,” Journal of Phytopathology, vol. 147, no. 5, pp. 299–305, 1999.
[24]
M. A. Flaishman, Z. Eyal, A. Zilberstein, C. Voisard, and D. Haas, “Suppression of septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Peudomonas putida,” Molecular Plant-Microbe Interactions, vol. 9, no. 7, pp. 642–645, 1996.
[25]
M. A. Savka, Y. Dessaux, P. Oger, and S. Rossbach, “Engineering bacterial competitiveness and persistence in the phytosphere,” Molecular Plant-Microbe Interactions, vol. 15, no. 9, pp. 866–874, 2002.
[26]
M. De Boer, P. Bom, F. Kindt et al., “Control of fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms,” Phytopathology, vol. 93, no. 5, pp. 626–632, 2003.
[27]
L. A. Silo-Suh, B. J. Lethbridge, S. J. Raffel, H. He, J. Clardy, and J. Handelsman, “Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85,” Applied and Environmental Microbiology, vol. 60, no. 6, pp. 2023–2030, 1994.
[28]
T. Watanabe, W. Oyanagi, K. Suzuki, and H. Tanaka, “Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation,” Journal of Bacteriology, vol. 172, no. 7, pp. 4017–4022, 1990.
[29]
L. A. Trachuk, L. P. Revina, T. M. Shemyakina, G. G. Chestukhina, and V. M. Stepanov, “Chitinases of Bacillus licheniformis B-6839: isolation and properties,” Canadian Journal of Microbiology, vol. 42, no. 4, pp. 307–315, 1996.
[30]
E. Frandberg and J. Schnurer, “Chitinolytic properties of Bacillus pabuli K1,” Journal of Applied Bacteriology, vol. 76, no. 4, pp. 361–367, 1994.
[31]
E. J. Bottone and R. W. Peluso, “Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report,” Journal of Medical Microbiology, vol. 52, no. 1, pp. 69–74, 2003.
[32]
J. B. Jones, J. P. Jones, R. E. Stall, and Zitter T. A., Compendium of Tomato Diseases, American Phytopathological Society, St. Paul, Minn, USA, 1991.
[33]
M. R. Hajlaoui, N. Hamza, S. Gargouri, and A. Guermech, “Apparition en Tunisie de Fusarium oxysporum f. sp. radicis-lycopersici, agent de la pourriture des racines et du collet de la tomate,” EPPO Bulletin, vol. 31, no. 4, pp. 505–507, 2001.
[34]
H. Sierotzki and G. Ulrich, “Molecular diagnostics for fungicide resistance in plant pathogens,” in Chemistry of Crop Protection: Progress and Prospects in Science and Regulation, G. Voss and G. Ramos, Eds., pp. 71–88, Wiley, Weinheim, Germany, 2003.
[35]
H. Shoun and N. Takaya, “Cytochromes P450nor and P450foxy of the fungus Fusarium oxysporum,” International Congress Series, vol. 1233, pp. 89–97, 2002.
[36]
D. Fravel, C. Olivain, and C. Alabouvette, “Fusarium oxysporum and its biocontrol,” New Phytologist, vol. 157, no. 3, pp. 493–502, 2003.
[37]
C. Borrero, M. I. Trillas, J. Ordovás, J. C. Tello, and M. Avilés, “Predictive factors for the suppression of fusarium wilt of tomato in plant growth media,” Phytopathology, vol. 94, no. 10, pp. 1094–1101, 2004.
[38]
J. Terrados and F. J. Medina Pons, “Epiphyte load on the seagrass Posidonia oceanica (L.) Delile does not indicate anthropogenic nutrient loading in Cabrera Archipelago National Park (Balearic Islands, Western Mediterranean),” Scientia Marina, vol. 72, no. 3, pp. 503–510, 2008.
[39]
J. P. Bethoux and G. Copin-Montegut, “Biological fixation of atmospheric nitrogen in the Mediterranean Sea,” Limonology And Oceanography, vol. 31, no. 6, pp. 1353–1358, 1986.
[40]
P. Castaldi and P. Melis, “Composting of KPosidonia oceanica and its use in Agriculture,” in Microbiology of Composting, H. Insam, N. Riddech, and S. Klammer, Eds., pp. 425–434, Springer, Berlin, Germany, 2002.
[41]
A. Saidane, N. De waele, and R. Van de velde, “Contribution a l’étude du compostage de plantes marines en vue de la préparation d’un amendement organique et d’un substrat horticole,” National Institute of Oceanography, vol. 6, no. 1–4, pp. 133–150, 1979.
[42]
ANPE, National Program of Management of Solid Wastes (PRO.NA.G.DE.S), 2007, http://www.anpe.net/.
[43]
A. De Guardia, D. Rogeau, F. Begnaud, and S. Quinio, “Characterisation of green wastes transformations occurring while composting,” in Proceedings of the 8th International Conference of the European Cooperative Research Network. Recycling of Agricultural, Municipal and Industrial Residues in Agriculture, J. Martinez, Ed., pp. 185–202, Rennes, France, May 1998.
[44]
D. R. Keeney and D. W. Nelson, “Nitrogen-inorganic forms,” in Methods of Soil Analysis. Agronomy, A. L. Page, R. H. Miller, and D. R. Keeney, Eds., vol. 9, pp. 643–698, American Society of Agronomy, Madison, Wis, USA, 2nd edition, 1982.
[45]
L. Wu, L. Q. Ma, and G. A. Martinez, “Comparison of methods for evaluating stability and maturity of biosolids compost,” Journal of Environmental Quality, vol. 29, no. 2, pp. 424–429, 2000.
[46]
F. Zucconi, M. Forte, A. Monaco, and M. de Bertoldi, “Biological evaluation of compost maturity,” BioCycle, vol. 22, no. 4, pp. 27–29, 1981.
[47]
P. J. Fiddaman and S. Rossall, “The production of antifungal volatiles by Bacillus subtilis,” Journal of Applied Bacteriology, vol. 74, no. 2, pp. 119–126, 1993.
[48]
A. W. Bakker and B. Schippers, “Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation,” Soil Biology and Biochemistry, vol. 19, no. 4, pp. 451–457, 1987.
[49]
J. R. Tagg and M. C. Given, “Assay system for bacteriocins,” Applied microbiology, vol. 21, no. 5, p. 943, 1971.
[50]
M. R. Swain and R. C. Ray, “Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora,” Microbiological Research, vol. 164, no. 2, pp. 121–130, 2009.
[51]
J. M. Whipps, “Effect of media growth and interactions between a range of soil borne glass house pathogens and antagonistic fungi,” New Phytologist, vol. 107, pp. 127–142, 1987.
[52]
C. D. Mckeen, C. C. Reillly, P. L. Pusey, et al., “Production and partial characterization of antifungal substances antagonistic to Monilia fructicola from Bacillus subtilis,” Phytopathology, vol. 76, pp. 136–139, 1986.
[53]
R. R. Bruce, G. W. Langdale, L. T. West, and W. P. Miller, “Soil surface modification by biomass inputs affecting rainfall infiltration,” Soil Science Society of America Journal, vol. 56, no. 5, pp. 1614–1620, 1992.
[54]
S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[55]
R. Noble and S. J. Roberts, “A review of the literature on eradication of plant pathogens and nematodes during composting, disease suppression and detection of plant pathogens in compost,” Standards Research Report WRAP, Creating Market for Recycled Resources, 2003.
[56]
R. L. Bugg, “Plant pathology and sustainable agriculture,” Components, vol. 1, pp. 7–10, 1990.
[57]
H. A. J. Hoitink, M. S. Krause, and A. G. Stone, Disease Control Induced by composts in Container Culture and Ground Beds Ornamental Plants Ornamental Plants Annual Reports and Research Reviews 2000 Ohio State University, 2000, http://www.ohioline.osu.edu/sc177/sc177_15.html/.
[58]
M. Ros, M. T. Hernandez, C. Garcia, A. Bernal, and J. A. Pascual, “Biopesticide effect of green compost against fusarium wilt on melon plants,” Journal of Applied Microbiology, vol. 98, no. 4, pp. 845–854, 2005.
[59]
P. Y. Y. Wong and D. D. Kitts, “Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts,” Food Chemistry, vol. 97, no. 3, pp. 505–515, 2006.
[60]
A. Arfaoui, B. Sifi, A. Boudabous, I. El Hadrami, and M. Chérif, “Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f.sp. ciceris, the causal agent of Fusarium wilt of chickpea,” Journal of Plant Pathology, vol. 88, no. 1, pp. 67–75, 2006.
[61]
P. J. L. Derikx, H. J. M. Op den Camp, C. Van der Drift, L. J. L. D. Van Griensven, and G. D. Vogels, “Biomass and biological activity during the production of compost used as a substrate in mushroom cultivation,” Applied and Environmental Microbiology, vol. 56, no. 10, pp. 3029–3034, 1990.
[62]
T. Mudder, “The sources and environmental significance of low levels of cyanide,” in Short Course on Management of Cyanide in Mining, ACMRR, Perth, Australia, 1997.
[63]
N. Kavroulakis, C. Ehaliotis, S. Ntougias, G. I. Zervakis, and K. K. Papadopoulou, “Local and systemic resistance against fungal pathogens of tomato plants elicited by a compost derived from agricultural residues,” Physiological and Molecular Plant Pathology, vol. 66, no. 5, pp. 163–174, 2005.
[64]
W. J. Jung, K. N. An, Y. L. Jin et al., “Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424,” Soil Biology and Biochemistry, vol. 35, no. 9, pp. 1261–1264, 2003.
[65]
S. L. Wang, H. T. Lin, T. W. Liang, Y. J. Chen, Y. H. Yen, and S. P. Guo, “Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials,” Bioresource Technology, vol. 99, no. 10, pp. 4386–4393, 2008.
[66]
M. Chérif, N. Sadfi, and G. B. Ouellette, “Ultrastructure of in vivo interactions of the antagonistic bacteria Bacillus cereus X16 and B. thuringiensis 55T with Fusarium roseum var. sambucinum, the causal agent of potato dry rot,” Phytopathologia Mediterranea, vol. 42, no. 1, pp. 41–54, 2003.
[67]
R. P. Larkin, “Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato,” Soil Biology and Biochemistry, vol. 40, no. 6, pp. 1341–1351, 2008.