全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Suppression of Bromus tectorum L. by Established Perennial Grasses: Potential Mechanisms—Part One

DOI: 10.1155/2012/632172

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bromus tectorum L. (cheatgrass) is an Eurasian annual grass that has invaded ecosystems throughout the Intermountain west of the United States. Our purpose was to examine mechanisms by which established perennial grasses suppress the growth of B. tectorum. Using rhizotrons, the experiment was conducted over 5 growth cycles: (1) B. tectorum planted between perennial grasses; (2) perennials clipped and B. tectorum planted; (3) perennials clipped and B. tectorum planted into soil mixed with activated carbon; (4) perennials clipped, B. tectorum planted, and top-dressed with fertilizer, and; (5) perennial grasses killed and B. tectorum planted. Water was not limiting in this study. Response variables measured at the end of each growth cycle included above-ground mass and tissue nutrient concentrations. Relative to controls (B. tectorum without competition), established perennial grasses significantly hindered the growth of B. tectorum. Overall, biomass of B. tectorum, grown between established perennials, increased considerably after fertilizer addition and dramatically upon death of the perennials. Potential mechanisms involved in the suppression of B. tectorum include reduced nitrogen (possibly phosphorus) availability and coopting of biological soil space by perennial roots. Our data cannot confirm or reject allelopathic suppression. Understanding the mechanisms involved with suppression may lead to novel control strategies against B. tectorum. 1. Introduction The Eurasian annual grass B. tectorum L. (cheatgrass, downy brome) has come to dominate many ecosystems in the Intermountain Region of the Western United States [1]. Pathways by which B. tectorum facilitate its expansion are myriad and include phenotypic plasticity to new host environments [2], it increases the rates and sizes of wildfires, which fosters more invasion [3], rapid above-and below-ground growth rates [4, 5], prolific seed production [6], landscape disturbance [7–9], and elevated atmospheric CO2 [10, 11]. Given the invasion success of B. tectorum, one might conclude that it is competitive. In the seedling stage, B. tectorum is quite competitive against native and introduced perennial grasses [12–14]. Particular ecosystems, however, are resistant to invasion by B. tectorum [15]. A common thread in ecosystem resistance to B. tectorum invasion is healthy, well-established, perennial grass communities such as the natives Pesudoroegneria spicata (bluebunch wheatgrass), Elymus elymoides (bottlebrush squirreltail), Poa secunda (bluegrass), and Festuca idahoensis (Idaho fescue), and the

References

[1]  M. A. Bradley and J. F. Mustard, “Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin,” Remote Sensing of Environment, vol. 94, no. 2, pp. 204–213, 2005.
[2]  E. L. Rice, “Allelopathic effect on nitrogen cycling,” in Allelopathy: Basic and Applied Aspects, pp. 31–58, Chapman & Hall, London, UK, 1992.
[3]  C. M. D'Antonio and P. M. Vitousek, “Biological invasions by exotic grasses, the grass/fire cycle, and global change,” Annual Review of Ecology and Systematics, vol. 23, no. 1, pp. 63–87, 1992.
[4]  G. A. Harris, “Some competitive relationships between Agropyron spicatum and Bromus tectorum,” Ecological Monographs, vol. 37, pp. 89–111, 1967.
[5]  G. A. Harris, “Root phenology as a factor of competition among grass seedlings,” Journal of Range Management, vol. 30, pp. 172–177, 1977.
[6]  G. S. Stewart and A. C. Hull, “Cheatgrass (Bromus tectorum L.)—an ecologic intruder in southern Idaho,” Ecology, vol. 30, pp. 58–74, 1949.
[7]  R. F. Daubenmire, “An ecological study of the vegetation of southeastern Washington and adjacent Idaho,” Ecological Monographs, vol. 12, pp. 53–79, 1942.
[8]  J. O. Klemmedson and J. G. Smith, “Cheatgrass (Bromus tectorum L.),” Botanical Review, vol. 30, pp. 226–262, 1964.
[9]  R. L. Piemeisel, “Causes affecting change and rate of change in a vegetation of annuals in Idaho,” Ecology, vol. 32, pp. 53–72, 1951.
[10]  S. D. Smith, T. E. Huxman, S. F. Zitzer et al., “Elevated CO2 increases productivity and invasive species success in an arid ecosystem,” Nature, vol. 408, no. 6808, pp. 79–82, 2000.
[11]  L. H. Ziska, J. B. Reeves III, and B. Blank, “The impact of recent increases in atmospheric CO2 on biomass production and vegetative retention of Cheatgrass (Bromus tectorum): implications for fire disturbance,” Global Change Biology, vol. 11, no. 8, pp. 1325–1332, 2005.
[12]  R. S. Rummell, “Some effects of competition from cheatgrass brome on crested wheatgrass and bluestem wheatgrass,” Ecology, vol. 27, pp. 159–167, 1946.
[13]  M. G. Francis and D. A. Pyke, “Crested wheatgrass-cheatgrass seedling competition in a mixed-density design,” Journal of Range Management, vol. 49, no. 5, pp. 432–438, 1996.
[14]  R. R. Blank, “Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant-soil relationships,” Plant and Soil, vol. 326, no. 1, pp. 331–343, 2010.
[15]  C. M. D'Antonio and M. Thomsen, “Ecological resistance in theory and practice,” Weed Technology, vol. 18, no. 1, pp. 1572–1577, 2004.
[16]  J. Beckstead and C. K. Augspurger, “An experimental test of resistance to cheatgrass invasion: limiting resources at different life stages,” Biological Invasions, vol. 6, no. 4, pp. 417–432, 2004.
[17]  J. C. Chambers, B. A. Roundy, R. R. Blank, S. E. Meyer, and A. Whittaker, “What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum,” Ecological Monographs, vol. 77, no. 1, pp. 117–145, 2007.
[18]  L. D. Humphrey and E. W. Schupp, “Competition as a barrier to establishment of a native perennial grass (Elymus elymoides) in alien annual grass (Bromus tectorum) communities,” Journal of Arid Environments, vol. 58, no. 4, pp. 405–422, 2004.
[19]  M. M. Borman, W. C. Krueger, and D. E. Johnson, “Effects of established perennial grasses on yields of associated annual weeds,” Journal of Range Management, vol. 44, no. 4, pp. 318–322, 1991.
[20]  C. G. Elton, The Ecology of Invasions by Animals and Plants, Methuen, London, UK, 1958.
[21]  E. C. Adair, I. C. Burke, and W. C. Lauenroth, “Contrasting effects of resource availability and plant mortality on plant community invasion by Bromus tectorum L.,” Plant and Soil, vol. 304, no. 1-2, pp. 103–115, 2008.
[22]  M. S. Booth, M. M. Caldwell, and J. M. Stark, “Overlapping resource use in three Great Basin species: implications for community invasibility and vegetation dynamics,” Journal of Ecology, vol. 91, no. 1, pp. 36–48, 2003.
[23]  M. J. Gundale, S. Sutherland, and T. H. DeLuca, “Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum,” Ecography, vol. 31, no. 2, pp. 201–210, 2008.
[24]  B. L. Kay and R. A. Evans, “Effects of fertilization on a mixed stand of cheatgrass and intermediate wheatgrass,” Journal of Range Management, vol. 18, pp. 7–11, 1965.
[25]  M. W. Paschke, T. McLendon, and E. F. Redente, “Nitrogen availability and old-field succession in a shortgrass steppe,” Ecosystems, vol. 3, no. 2, pp. 144–158, 2000.
[26]  H. I. Rowe, C. S. Brown, and M. W. Paschke, “The influence of soil inoculum and nitrogen availability on restoration of high-elevation steppe communities invaded by Bromus tectorum,” Restoration Ecology, vol. 17, no. 5, pp. 686–694, 2009.
[27]  R. R. Blank and J. A. Young, “Plant-soil relationships of Bromus tectorum L.: interactions among labile carbon additions, soil invasion status, and fertilizer,” Applied and Environmental Soil Science, vol. 2009, Article ID 929120, 7 pages, 2009.
[28]  B. B. Casper and R. B. Jackson, “Plant competition underground,” Annual Review of Ecology and Systematics, vol. 28, pp. 545–570, 1997.
[29]  H. J. Schenk, “Root competition: beyond resource depletion,” Journal of Ecology, vol. 94, no. 4, pp. 725–739, 2006.
[30]  M. A. Ross and J. L. Harper, “Occupation of biological space during seedling establishment,” Journal of Ecology, vol. 60, pp. 77–88, 1972.
[31]  K. D. M. McConnaughay and F. A. Bazzaz, “Is physical space a soil resource?” Ecology, vol. 72, no. 1, pp. 94–103, 1991.
[32]  K. D. M. McConnaughay and F. A. Bazzaz, “The occupation and fragmentation of space: consequences of neighbouring roots,” Functional Ecology, vol. 6, no. 6, pp. 704–710, 1992.
[33]  R. M. Callaway and J. L. Hierro, “Resistance and susceptibility of plant communities to invasion: revisiting rabotnov’s ideas about community homeostasis,” in Alleolpathy: A Physiological Process With Ecological Implications, pp. 395–414, Springer, Amsterdam, The Netherlands, 2006.
[34]  A. S. Kumar H. P. Bias, “Allelopathy and exotic plant invasion,” in Plant Communication from an Ecological Perspective, Signaling and Communication in Plants, pp. 61–73, Springer, Berlin, Germany, 2010.
[35]  S. M. Prober and I. D. Lunt, “Restoration of Themeda australis swards suppresses soil nitrate and enhances ecological resistance to invasion by exotic annuals,” Biological Invasions, vol. 11, no. 2, pp. 171–181, 2009.
[36]  J. D. Weidenhamer J. T. Romeo, “Allelopathy as a mechanism for resisting invasion: the case of Polygonella myriophylla,” in Invasive Plants: Ecological and Agricultural Aspects, pp. 167–177, Birkh?user Verlang, Basel, Switzerland, 2005.
[37]  A. Mubarek and R. A. Olsen, “Immiscible displacement of the soil solution by centrifugation,” Soil Science Society of America Journal, vol. 40, pp. 329–331, 1976.
[38]  D. R. Keeney and D. W. Nelson, “Nitrogen—inorganic forms,” in Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, pp. 643–698, American Society of Agronomy, Madison, Wis, USA, 1982.
[39]  S. R. Olsen and L. E. Sommers, “Phosphorus,” in Methods of Soil Analysis, Part 2. Chemical and Microbiological PropertiesAmerican Society of Agronomy, pp. 403–430, American Society of Agronomy, Madison, Wis, USA, 1982.
[40]  Y. P. Kalra, Handbook of Reference Methods for Plant Analysis, CRC Press, Boca Raton, Fla, USA, 1998.
[41]  L. H. Wullstein, M. L. Bruening, and W. B. Bollen, “Nitrogen fixation associated with sand grain root sheaths (rhizosheaths) of certain xeric grasses,” Physiologia Plantarum, vol. 46, pp. 1–4, 1979.
[42]  M. S. Booth, J. M. Stark, and M. M. Caldwell, “Inorganic N turnover and availability in annual- and perennial-dominated soils in a northern Utah shrub-steppe ecosystem,” Biogeochemistry, vol. 66, no. 3, pp. 311–330, 2003.
[43]  C. M. D'Antonio and M. Thomsen, “Ecological resistance in theory and practice,” Weed Technology, vol. 18, no. 1, pp. 1572–1577, 2004.
[44]  E. Vasquez, R. Sheley, and T. Svejcar, “Nitrogen enhances the competitive ability of cheatgrass (Bromus tectotum) relative to native grasses,” Invasive Plant Science and Management, vol. 1, no. 3, pp. 287–295, 2008.
[45]  J. J. James, “Effect of soil nitrogen stress on the relative growth rate of annual and perennial grasses in the Intermountain West,” Plant and Soil, vol. 310, no. 1-2, pp. 201–210, 2008.
[46]  C. T. MacKown, T. A. Jones, D. A. Johnson, T. A. Monaco, and M. G. Redinbaugh, “Nitrogen uptake by perennial and invasive annual grass seedlings: nitrogen form effects,” Soil Science Society of America Journal, vol. 73, no. 6, pp. 1864–1870, 2009.
[47]  R. R. Blank and T. Morgan, “Mineral nitrogen in a crested wheatgrass stand: implications for suppression of cheatgrass,” Rangeland Ecology and Management, vol. 65, pp. 101–104, 2012.
[48]  J. C. Lata, V. Degrange, X. Raynaud, P. A. Maron, R. Lensi, and L. Abbadie, “Grass populations control nitrification in savanna soils,” Functional Ecology, vol. 18, no. 4, pp. 605–611, 2004.
[49]  E. L. Rice and S. K. Pancholy, “Inhibition of nitrification by climax ecosystem. III. Inhibitors other than tannins,” American Journal of Botany, vol. 61, pp. 1095–1103, 1991.
[50]  J. Q. Yu and Y. Matsui, “Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.),” Journal of Chemical Ecology, vol. 20, no. 1, pp. 21–31, 1994.
[51]  J. A. Lau, K. P. Puliafico, J. A. Kopshever et al., “Inference of allelopathy is complicated by effects of activated carbon on plant growth,” New Phytologist, vol. 178, no. 2, pp. 412–423, 2008.
[52]  K. Wei?huhn and D. Prati, “Activated carbon may have undesired side effects for testing allelopathy in invasive plants,” Basic and Applied Ecology, vol. 10, no. 6, pp. 500–507, 2009.
[53]  W. S. Gordon and R. B. Jackson, “Nutrient concentrations in fine roots,” Ecology, vol. 81, no. 1, pp. 275–280, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133