全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Ribosomal Protein AgRPS3aE from Halophilic Aspergillus glaucus Confers Salt Tolerance in Heterologous Organisms

DOI: 10.3390/ijms16023058, PP. 3058-3070

Keywords: Aspergillus glaucus, ribosomal protein AgRPS3aE, salt tolerance, expression in hetero-organisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

High salt in soils is one of the abiotic stresses that significantly reduces crop yield, although saline lands are considered potential resources arable for agriculture. Currently, genetic engineering for enhancing salt tolerance is being tested as an efficient and viable strategy for crop improvement. We previously characterized a large subunit of the ribosomal protein RPL44, which is involved in osmotic stress in the extremely halophilic fungus Aspergillus glaucus. Here, we screened another ribosomal protein (AgRPS3aE) that also produced high-salt tolerance in yeast. Bioinformatics analysis indicated that AgRPS3aE encodes a 29.2 kDa small subunit of a ribosomal protein belonging to the RPS3Ae family in eukaryotes. To further confirm its protective function against salinity, we expressed AgRPS3aE in three heterologous systems, the filamentous fungus Magnaporthe oryzae and two model plants Arabidopsis and tobacco. Overexpression of AgRPS3aE in all tested transformants significantly alleviated stress symptoms compared with controls, suggesting that AgRPS3aE functions not only in fungi but also in plants. Considering that ribosomal proteins are housekeeping components in organisms from prokaryotes to eukaryotes, we propose that AgRPS3aE is one of the optimal genes for improving high-salt tolerance in crops.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133