全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metals  2015 

Effect of Strain Localization on Pitting Corrosion of an AlMgSi0.5 Alloy

DOI: 10.3390/met5010172, PP. 172-191

Keywords: AlMgSi0.5 alloy, ECAP, pitting corrosion, micro-capillary cell, deformation localization

Full-Text   Cite this paper   Add to My Lib

Abstract:

The corrosion susceptibility of an age-hardened aluminum alloy in different processing conditions, especially after a single pass of equal-channel angular pressing (ECAP), is examined. The main question addressed is how corrosive attack is changed by strain localization. For that purpose, an AlMgSi0.5 alloy with a strain localized microstructure containing alternating shear bands was subjected to potentiodynamic polarization on a macro-scale and micro-scale using the micro-capillary technique. Pitting potentials and the corrosion appearance (pit depth, corroded area fractions and volumes) are discussed with respect to microstructural evolution due to casting, extrusion and ECAP. Size, shape and orientation of grains, constituent particle fragmentation, cell size and microstrain were analyzed. Stable pitting of shear bands results in less positive potentials compared to adjacent microstructure. More pits emerge in the shear bands, but the pit depth is reduced significantly. This is attributed to higher microstrains influencing the stability of the passivation layer and the reduced size of grains and constituent particles. The size of the crystallographic pits is associated with the deformation-induced cell size of the aluminum alloy.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133