We developed advances laser
retroreflectors for solar system exploration, geodesy and for precision test of
General Relativity (GR) and new gravitational physics: a micro-reflector array
(INRRI, Instrument for landing-Roving laser Retroreflectors Investigations), a
midsize reflector array for the European Earth Observation (EO) program,
Copernicus (CORA, COpernicus laser Retroreflector Array), a large,
single-retroreflector (MoonLIGHT, Moon Laser Instrumentation for General relativity
High accuracy Tests). These laser retroreflectors will be fully characterized
at the SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry Cube/microsat
Characterization Facilities Laboratory), a unique and dedicated infrastructure
of INFN-LNF (www.lnf.infn.it/esperimenti/etrusco/). Our research program foresees several activities: 1) Developing and
characterizing the mentioned laser retroreflector devices to determine landing
accuracy, rover positioning during exploration and planetary/Moon’s surface
georeferencing. These devices will be passive, laser wavelength- independent,
long-lived reference point. INRRI will enable the performance of full-column measurement
of trace species in the Mars atmosphere by future space-borne lidars. These
measurements will be complementary to highly localized measurements made by gas
sampling techniques on the Rover or by laser back-scattering lidar techniques
on future orbiters and/or from the surface. INRRI will also support laser and
quantum communications, carried out among future Mars Orbiters and Mars Rovers.
This will be possible also because the INRRI laser retroreflectors will be
metal back-coated and, therefore, will not change the photon polarization. The
added value of INRRI is its low mass, compact size, zero maintenance and its
usefulness for any future laser altimetry, ranging, communications, atmospheric
lidar capable Mars orbiter, for virtually decades after the end of the Mars
surface mission, like the Apollo and Lunokhod lunar laser retroreflectors.
MoonLIGHT and INRRI are proposed for landings on the Moon (two Google Lunar X
Prize Missions, namely Moon Express; Russia’s Luna-27 mission, as well as
others under consideration/negotia- tion, also with the help of ASI, ESA and
other partnerships); 2) Precision tests of GR with LLR to MoonLIGHT reflectors.
Development of new fundamental gravity physics models and study of experimental
constraints to these models
References
[1]
Dell’Agnello, S., et al. (2011) Creation of the New Industry-Standard Space Test of Laser Retroreflectors for the GNSS and LAGEOS. J. Adv. Space Res., 47, 822-842. http://ilrs.gsfc.nasa.gov/about/reports/other_publications.html
http://dx.doi.org/10.1016/j.asr.2010.10.022
[2]
Dell’Agnello, S., et al. (2011) ETRUSCO-2, an ASI-INFN Project for the Development and SCF-Test of GNSS Laser Retroreflector Arrays. ESA Proceedings of 3rd International Colloquium—Scientific and Fundamental Aspects of the Galileo Programme, Copenhagen.
http://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/ga01_reflector.html
[3]
Boni, A., et al. (2011) World-first SCF-Test of the NASA-GSFC LAGEOS Sector and Hollow Retroreflector. Proc. 17th International Workshop on Laser Ranging, Bad K?tzting, Germany.
[4]
Bosco, A., et al. (2007) Probing Gravity in NEO’s with High-Accuracy Laser-Ranged Test Masses. Int. Jou. Mod. Phys. D, 16, 2271-2285. http://dx.doi.org/10.1142/S0218271807011322
[5]
Bender, P.L., et al. (1973) The Lunar Laser Ranging Experiment. Science, 182, 229-238.
http://dx.doi.org/10.1126/science.182.4109.229
[6]
Shapiro, I.I., Reasenberg, R.D., Chandler, J.F. and Babcock, R.W. (1988) Measurement of the de Sitter Precession of the Moon: A Relativistic Three-Body Effect. Phys. Rev. Lett., 61, 2643.
http://dx.doi.org/10.1103/PhysRevLett.61.2643
Currie, D., Dell’Agnello, S. and Delle Monache, G. (2011) A Lunar Laser Ranging Retroreflector Array for the 21st Century. Acta Astronaut, 68, 667-680. http://dx.doi.org/10.1016/j.actaastro.2010.09.001
[9]
Martini, M., et al. (2012) MoonLIGHT: A USA-Italy Lunar Laser Ranging Retroreflector Array for the 21st Century. Planetary and Space Science, 74, 276-282. http://dx.doi.org/10.1016/j.pss.2012.09.006
[10]
Dell’Agnello, S., et al. (2012) Probing General Relativity and New Physics with Lunar Laser Ranging. Nuclear Instruments and Methods in Physics Research A, 692, 275-279. http://dx.doi.org/10.1016/j.nima.2012.01.002
[11]
Currie, D., Dell’Agnello, S., Delle Monache, G., Behr, B. and Wil-liams, J.G. (2013) A Lunar Laser Ranging Retroreflector Array for the 21st Century. Nuclear Physics B (Proc. Suppl.), 243–244, 218-228.
http://dx.doi.org/10.1016/j.nuclphysbps.2013.09.007
[12]
Dell’Agnello, S., et al. (2011) Fundamental Physics and Absolute Positioning Metrology with the MAGIA Lunar Orbiter. Phase A Study for ASI’s Call for Small Missions. Exp. Astron., 32, 19-35.
http://dx.doi.org/10.1007/s10686-010-9195-0
[13]
March, R., Bellettini, G., Tauraso, R. and Dell’Agnello, S. (2011) Constraining Spacetime Torsion with the Moon and Mercury. Phys. Rev. D, 83, 104008. http://dx.doi.org/10.1103/PhysRevD.83.104008
[14]
March, R., Bellettini, G., Tauraso, R. and Dell’Agnello, S. (2011) Constraining Spacetime Torsion with LAGEOS. Gen. Relativ. Gravit., 43, 3099-3126. http://dx.doi.org/10.1007/s10714-011-1226-2
[15]
Bertolami, O., March, R. and Paramos, J. (2013) Solar System Constraints to Non-Minimally Coupled Gravity. Phys. Rev. D, 88, 064019. http://dx.doi.org/10.1103/PhysRevD.88.064019
[16]
Castel-Branco, N., Paramos, J. and March, R. (2014) Perturbation of the Metric around a Spherical Body from a Nonminimal Coupling between Matter and Curvature. Phys. Rev. B, 735, 25-32.
[17]
Dell’Agnello, S., et al. (2013) A Unique Infrastructure to Develop and SCF-Test Laser Retroreflector Arrays for GNSS, EGNOS-V2 and Inter-Gnss-Satellite Laser Links. ESA Proceedings of 4th International Collo-quium—Scientific and Fundamental Aspects of the Galileo Programme, Prague.