We review theoretical relations
between macroscopic properties of neutron stars and microscopic quantities of
nuclear matter, such as consistency of hadronic nuclear models and observed
masses of neutron stars. The relativistic hadronic field theory, quantum
hadrodynamics (QHD), and mean-field approximations of the theory are applied to
saturation properties of symmetric nuclear and neutron matter. The equivalence
between mean-field approximations and Hartree approximation is emphasized in
terms of renormalized effective masses and effective coupling constants of
hadrons. This is important to prove that the direct application of mean-field
(Hartree) approximation to nuclear and neutron matter is inadequate to examine
physical observables. The equations of state (EOS), binding energies of nuclear
matter, self-consistency of nuclear matter, are reviewed, and the result of
chiral Hartree-Fock ?approximation is
shown. Neutron stars and history of nuclear astrophysics, nuclear model and nuclear
matter, possibility of hadron and hadron-quark neutron stars are briefly
reviewed. The hadronic models are very useful and practical for understanding
astrophysical phenomena, nuclear
References
[1]
Uechi, H., Uechi, S.T. and Serot, B.D. (2012) Neutron Stars: The Aspect of High Density Matter, Equations of State and Observables. Nova Science Publishers, New York.
[2]
Baym, G. and Pethick, C. (1978) In: Bennemann, K.H. and Ketterson, J.B., Eds., The Physics of Liquid and Solid Helium, Part II, John Wiley, New York.
[3]
Lattimer, J.M. and Prakash, M. (2007) Phys. Rep., 442, 109. http://dx.doi.org/10.1016/j.physrep.2007.02.003
[4]
Heiselberg, H. and Hjorth-Jensen, M. (2000) Phys. Rep., V328, 237. http://dx.doi.org/10.1016/S0370-1573(99)00110-6
[5]
Walecka, J.D. (1974) A Theory of Highly Condensed Matter. Annals of Physics (N.Y.), 83, 491.
http://dx.doi.org/10.1016/0003-4916(74)90208-5
Walecka, J.D. (1995) Theoretical Nuclear and Subnuclear Physics. Oxford University Press, New York.
[6]
Serot, B.D. and Walecka, J.D. (1986) Advances in Nuclear Physics, Vol. 16. Negele, J.W. and Vogt, E., Eds., Plenum, New York.
[7]
Uechi, S.T. and Uechi, H. (2009) The Open Nuclear and Particle Physics Journal, V2, 47.
Uechi, S.T. and Uechi, H. (2010) arXiv:1003.3630 [nucl-th]. http://arxiv.org/abs/1007.3630
[8]
Uechi, H. (2004) Progress of Theoretical Phys., 111, 525. http://dx.doi.org/10.1143/PTP.111.525
[9]
Baym, G. and Kadanoff, L.P. (1961) Phys. Rev., 124, 287. http://dx.doi.org/10.1103/PhysRev.124.287
Baym, G. (1962) Phys. Rev., 127, 1391. http://dx.doi.org/10.1103/PhysRev.127.1391
[10]
Kohn, W. and Sham, L.J. (1965) Phys. Rev., 140, A1133.
Kohn, W. (1999) Rev. Mod. Phys., 71, 1253. http://dx.doi.org/10.1103/RevModPhys.71.1253
[11]
Uechi, H. (2012) The Annual Meeting of Japan Physical Society (JPS), Sept. 26aHB-6.
[12]
Takada, Y. (1995) Phys. Rev., B52, Article ID: 12708.
[13]
Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman and Company.
[14]
Serot, B.D. and Uechi, H. (1989) Ann. of Phys., 179, 272. http://dx.doi.org/10.1016/0003-4916(87)90137-0
Uechi, S.T. and Uechi, H. (2009) Advances in High Energy Phys., Article ID: 640919.
Uechi, S.T. and Uechi, H. (2010) arXiv:1003.4815 [nucl-th]. http://arxiv.org/pdf/1003.4815v1.
[15]
Witten, E. (1984) Phys. Rev., D30, 272. http://dx.doi.org/10.1103/PhysRevD.30.272
[16]
Farhi, E. and Jaffe, R.L. (1984) Phys. Rev., D30, 2379. http://dx.doi.org/10.1103/PhysRevD.30.2379
[17]
Uechi, H. (2006) Nucl. Phys. A, 780, 247. http://dx.doi.org/10.1016/j.nuclphysa.2006.10.015
Uechi, H. (2008) Nucl. Phys. A, 799, 181. http://dx.doi.org/10.1016/j.nuclphysa.2007.11.003