全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Nonlinear Dust-Acoustic Shock Waves in an Unmagnetized Dusty Plasma with q-Nonextensive Electrons Where Dust Is Arbitrarily Charged Fluid

DOI: 10.4236/jamp.2015.32015, PP. 103-110

Keywords: Dusty Plasma, Nonextensive Electrons, Shock Waves, Solitary Waves

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nonlinear propagation of dust-acoustic (DA) shock waves in three-component unmagnetized dusty plasma consisting of nonextensive electrons, Maxwellian ions and arbitrarily charged mobile dust grain has been investigated. It is found that the presence of q-nonextensive electrons and ions can change the nonlinear behavior of shock wave. The standard reductive perturbation method is employed to study the basic features (phase speed, amplitude and width) of DA shock waves (DASWs) which are significantly modified by the presence of Maxwellian ions and nonextensive electrons. The present investigation can be very effective for understanding the nonlinear characteristics of the DASWs in space and laboratory dusty plasmas.

References

[1]  Mendis, D.A. and Rosenberg, M. (1994) Annu. Rev Astron. Astrophys., 32, 419. http://dx.doi.org/10.1146/annurev.aa.32.090194.002223
[2]  Verheest, F. (2000) Waves in Dusty Space Plasmas. Kluwer Academic Press, Dordrecht. http://dx.doi.org/10.1007/978-94-010-9945-5
[3]  Rosenberg, M. and Merlino, R.L. (2007) Planet Space Sci., 55, 1464. http://dx.doi.org/10.1016/j.pss.2007.04.012
[4]  Rao, N.N., Shukla, P.K. and Yu, M.Y. (1990) Planet. Space Sci., 38, 543. http://dx.doi.org/10.1016/0032-0633(90)90147-I
[5]  Shukla, P.K. and Mamun, A.A. (2002) Introduction to Dusty Plasma Physics. Institute of Physics Publishing Ltd., Bristol. http://dx.doi.org/10.1887/075030653X
[6]  Rosenberg, M. and Mendis, D.A. (1995) IEEE Trans. Plasma Sci., 23, 177. http://dx.doi.org/10.1109/27.376584
[7]  Goertz, C.K. (1989) Rev. Geophys., 27, 271. http://dx.doi.org/10.1029/RG027i002p00271
[8]  Shahmansouri, M. and Tribeche, M. (2013) Astrophys. Space Sci., 344, 99-104. http://dx.doi.org/10.1007/s10509-012-1296-y
[9]  Tsallis, C. (1988) J. Stat. Phys., 52, 479. http://dx.doi.org/10.1007/BF01016429
[10]  Plastino, A.R. and Plastino, A. (1993) Phys. Lett. A, 174, 384. http://dx.doi.org/10.1016/0375-9601(93)90195-6
[11]  Gervino, G., Lavagno, A. and Pigato, D. (2012) Central Euro. J. Phys., 10, 594. http://dx.doi.org/10.2478/s11534-011-0123-3
[12]  Lavagno, A. and Pigato, D. (2011) Euro. Phys. J. A, 47, 52. http://dx.doi.org/10.1140/epja/i2011-11052-1
[13]  Lima, J.A.S., Silva, R. and Santos, J. (2000) Phys. Rev. E, 61, 3260. http://dx.doi.org/10.1103/PhysRevE.61.3260
[14]  Pakzad, H.R. (2011) Phys. Scr., 83, Article ID: 015505.
[15]  Tribeche, M. and Merriche, A. (2011) Phys. Plasmas, 18, Article ID: 034502.
[16]  D’Angelo, N. (2004) J. Phys. D, 37, 860. http://dx.doi.org/10.1088/0022-3727/37/6/009
[17]  Mamun, A.A., Shukla, P.K. and Eliasson, B. (2009) Phys. Plasmas, 16, Article ID: 1145031. http://dx.doi.org/10.1063/1.3261840
[18]  Paul, A., Mandal, G., Mamun, A.A. and Amin, M.R. (2011) IEEE Trans. Plasma Sci., 39, 1254. http://dx.doi.org/10.1109/TPS.2011.2120627
[19]  Shahmansouri, M. and Tribeche, M. (2013) Astrophys. Space Sci., 346, 165-170. http://dx.doi.org/10.1007/s10509-013-1430-5
[20]  Schamel, H. (1972) J. Plasma Phys., 14, 905. http://dx.doi.org/10.1088/0032-1028/14/10/002
[21]  Schamel, H. (1973) J. Plasma Phys., 9, 377. http://dx.doi.org/10.1017/S002237780000756X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133