This paper presents an empirical model for classifying frozen/unfrozen soils in the entire Bras d’Henri River watershed (167?km2) near Quebec City (Quebec, Canada). It was developed to produce frozen soil maps under snow cover using RADARSAT-1 fine mode images and in situ data during three winters. Twelve RADARSAT-1 images were analyzed from fall 2003 to spring 2006 to discern the intra- and interannual variability of frozen soil characteristics. Regression models were developed for each soil group (parent material-drainage-soil type) and land cover to establish a threshold for frozen soil from the backscattering coefficients (HH polarization). Tilled fields showed higher backscattering signal (+3?dB) than the untilled fields. The overall classification accuracy was 87% for frozen soils and 94% for unfrozen soils. With respect to land use, that is, tilled versus untilled fields, an overall accuracy of 89% was obtained for the tilled fields and 92% for the untilled fields. Results show that this new mapping approach using RADARSAT-1 images can provide estimates of surface soil status (frozen/unfrozen) at the watershed scale in agricultural areas. 1. Introduction Soil freezing is a critical attribute for sustaining agricultural production. It has a major impact on soil water erosion at snowmelt [1, 2] and causes winterkill of perennial crops [3]. Soil water erosion and surface runoff are major sources for transporting water from agricultural land to streams. Soil sediments adversely affect surface water quality and often carry phosphorus, ammonia, pathogens, trace elements, and other contaminants from agricultural sources [4]. In Eastern Canada, the extent of this diffuse pollution is exacerbated when significant snowmelt runoff occurs on bare and erodible frozen agricultural soils located on sloping fields [5]. Environmental conditions in spring can significantly affect water transport. Early snow accumulation on wet soils may result in more unfrozen soils [6], or shallowly frozen soils, that allow higher infiltration of water at spring melt which consequently decreases runoff [7, 8]. Late snow accumulation on relatively dry soils with cold air temperatures will allow frost to penetrate deeper below the soil surface. Soils frozen below a 15-cm depth can impede water infiltration [9] and generate a greater risk of erosion and snowmelt runoff at spring thaw. Despite the environmental impacts of frozen soils, soil temperature is poorly documented in Canada; agricultural lands are not systematically monitored by meteorological stations. Clearly, soil
References
[1]
N. C. Hansen, S. C. Gupta, and J. F. Moncrief, “Snowmelt runoff, sediment, and phosphorus losses under three different tillage systems,” Soil and Tillage Research, vol. 57, no. 1-2, pp. 93–100, 2000.
[2]
G. Y. Niu and Z. L. Yang, “Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale,” Journal of Hydrometeorology, vol. 7, no. 5, pp. 937–952, 2006.
[3]
G. Bélanger, Y. Castonguay, A. Bertrand et al., “Winter damage to perennial forage crops in eastern Canada: causes, mitigation, and prediction,” Canadian Journal of Plant Science, vol. 86, no. 1, pp. 33–47, 2006.
[4]
B. Ulén, “Concentrations and transport of different forms of phosphorus during snowmelt runoff from an illite clay soil,” Hydrological Processes, vol. 17, no. 4, pp. 747–758, 2003.
[5]
D. C. Garen and D. S. Moore, “Curve number hydrology in water quality modeling: uses, abuses, and future directions,” Journal of the American Water Resources Association, vol. 41, no. 2, pp. 377–388, 2005.
[6]
E. Van Bochove, G. Thériault, P. Rochette, H. G. Jones, and J. W. Pomeroy, “Thick ice layers in snow and frozen soil affecting gas emissions from agricultural soils during winter,” Journal of Geophysical Research, vol. 106, no. 19, pp. 23061–23071, 2001.
[7]
K. M. Hinkel, R. F. Paetzold, F. E. Nelson, and J. G. Bockheim, “Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999,” Global and Planetary Change, vol. 29, no. 3-4, pp. 293–309, 2001.
[8]
U. Hillard, V. Sridhar, D. P. Lettenmaier, and K. C. McDonald, “Assessing snow melt dynamics with NASA scatterometer (NSCAT) data and a hydrologic process model,” Remote Sensing of Environment, vol. 86, no. 1, pp. 52–69, 2003.
[9]
H. G. Jones, J. W. Pomeroy, D. A. Walker, and R. W. Hoham, Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems, Cambridge University Press, Cambridge, Mass, USA, 2001.
[10]
J. Khaldoune, M. Bernier, E. Van Bochove, and M. C. Nolin, “Détection du gel et non-gel du sol en utilisant le radar polarimétrique à synthèse d'ouverture,” Canadian Journal of Remote Sensing, vol. 34, no. 4, pp. 418–429, 2008.
[11]
T. Zhang and R. L. Armstrong, “Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing,” Geophysical Research Letters, vol. 28, no. 5, pp. 763–766, 2001.
[12]
B. Zuerndorfer and A. W. England, “Radiobrightness decision criteria for freeze/thaw boundaries,” IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 1, pp. 89–102, 1992.
[13]
F. Bonn and G. Rochon, Précis de Télédétection: Principes et Méthodes. Vol. 1, Presse de l'Université du Québec/AUPELF, Ste-Foy, Québec, Canada, 1992.
[14]
C. Fran?ois, C. Ottlé, and L. Prévot, “Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements,” International Journal of Remote Sensing, vol. 18, no. 12, pp. 2587–2621, 1997.
[15]
B. Coudert, C. Ottlé, and X. Briottet, “Monitoring land surface processes with thermal infrared data: calibration of SVAT parameters based on the optimisation of diurnal surface temperature cycling features,” Remote Sensing of Environment, vol. 112, no. 3, pp. 872–887, 2008.
[16]
J. L. Davis and A. P. Annan, “Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy,” Geophysical Prospecting, vol. 37, no. 5, pp. 531–551, 1989.
[17]
A. Pietroniro and R. Leconte, “A review of Canadian remote sensing applications in hydrology, 1995–1999,” Hydrological Processes, vol. 14, no. 9, pp. 1641–1666, 2000.
[18]
M. Bernier and J. P. Fortin, “The potential of times series of C-band SAR data to monitor dry and shallow snow cover,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 1, pp. 226–243, 1998.
[19]
Y. Crevier, T. J. Pultz, T. I. Lukowski, and T. Toutin, “Temporal analysis of ERS-1 SAR backscatter for hydrology applications,” Canadian Journal of Remote Sensing, vol. 22, no. 1, pp. 65–76, 1996.
[20]
D. W. Leverington and C. R. Duguay, “A neural network method to determine the presence or absence of permafrost near Mayo, Yukon Territory, Canada,” Permafrost and Periglacial Processes, vol. 8, no. 2, pp. 205–215, 1997.
[21]
C. Lagacé and M. Bernier, “Développement d'une approche pour faire le suivi du gel saisonnier du sol sur le bassin de la rivière La Grande à partir de l'utilisation conjointe d'images SSM/I et RADARSAT,” in Proceedings of the 57th Eastern Snow Conference, Syracuse, NY, USA, 2000.
[22]
M. T. Hallikainen, F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and L. K. Wu, “Microwave dielectric behavior of wet soil—part I: empirical models and experimental observations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 23, no. 1, pp. 25–34, 1985.
[23]
F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive: Volume III, Artech House, Deham, Mass, USA, 1986.
[24]
C. Elachi, Introduction to the Physics and Techniques of Remote Sensing, John Wiley & Sons, New York, NY, USA, 1987.
[25]
E. J. M. Rignot, J. B. Way, C. Williams, and L. Viereck, “Radar estimates of aboveground biomass in boreal forests of interior Alaska,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1117–1124, 1994.
[26]
C. Doussan, L. Jouniaux, and J. L. Thony, “Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils,” Journal of Hydrology, vol. 267, no. 3-4, pp. 173–185, 2002.
[27]
E. T. Engman and N. Chauhan, “Status of microwave soil moisture measurements with remote sensing,” Remote Sensing of Environment, vol. 51, no. 1, pp. 189–198, 1995.
[28]
Y. Gauthier, “Détection par radar des zones à risque de gel pour les luzernières,” in Actes du Colloque, Nouvelles Technologies en Agriculture, pp. 135–139, St-Jean-sur-Richelieu, Centre de Télédétection en Agro-Environnement, 1997.
[29]
J. B. Way, R. Zimmermann, E. Rignot, K. McDonald, and R. Oren, “Winter and spring thaw as observed with imaging radar at BOREAS,” Journal of Geophysical Research, vol. 102, no. 24, pp. 29673–29684, 1997.
[30]
C. Lagacé, M. Bernier, and Y. Gauthier, “Cartographie du gel saisonnier du sol de ta?ga à partir d'images RSO de RADARSAT-1 et SSM/I de DMSP F-8,” Télédétection, vol. 2, no. 3, pp. 161–175, 2001.
[31]
F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive: Vol. 1. Fundamentals and Radiometry, Artech House, Dedham, Mass, USA, 1982.
[32]
K. Boehnke and V. Wismann, “ERS scatterometer land applications: detecting soil thawing in Siberia,” Earth Observation Quarterly, vol. 52, pp. 4–7, 1996.
[33]
V. Wismann, “Monitoring of seasonal snowmelt on Greenland with ERS scatterometer data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 4, pp. 1821–1826, 2000.
[34]
J. S. Kimball, K. C. McDonald, A. R. Keyser, S. Frolking, and S. W. Running, “Application of the NASA scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska,” Remote Sensing of Environment, vol. 75, no. 1, pp. 113–126, 2001.
[35]
L. -C. Lundin, “Hydraulic properties in an operational model of frozen soil,” Journal of Hydrology, vol. 118, no. 1–4, pp. 289–310, 1990.
[36]
A. Musy and M. Soutter, Physique du Sol, Presses polytechniques et universitaires Romandes, Lausanne, Switzerland, 1991.
[37]
L. Nyberg, M. St?hli, P. E. Mellander, and K. Bishop, “Soil frost effects on soil water and runoff dynamics along a boreal forest transect: field investigations,” Hydrological Processes, vol. 15, no. 6, pp. 909–926, 2001.
[38]
J. F. Villasenor, D. R. Fatland, and L. D. Hinzman, “Change detection on Alaska's north slope using repeat-pass ERS-1 SAR images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 31, no. 1, pp. 227–236, 1993.
[39]
T. J. Pultz, Y. Crevier, R. J. Brown, and J. Boisvert, “Monitoring local environment conditions with SIR-C/X-SAR,” Remote Sensing of Environment, vol. 59, no. 2, pp. 248–255, 1997.
[40]
J. B. Boisvert, Q. H. J. Gwyn, A. Chanzy, D. J. Major, B. Brisco, and R. J. Brown, “Effect of surface soil moisture gradients on modelling radar backscattering from bare fields,” International Journal of Remote Sensing, vol. 18, no. 1, pp. 153–170, 1997.
[41]
N. Baghdadi, P. Paillou, G. Grandjean, P. Dubois, and M. Davidson, “Relationship between profile length and roughness variables for natural surfaces,” International Journal of Remote Sensing, vol. 21, no. 17, pp. 3375–3381, 2000.
[42]
M. Zribi and M. Dechambre, “A new empirical model to retrieve soil moisture and roughness from C-band radar data,” Remote Sensing of Environment, vol. 84, no. 1, pp. 42–52, 2003.
[43]
M. M. Rahman, M. S. Moran, D. P. Thoma et al., “A derivation of roughness correlation length for parameterizing radar backscatter models,” International Journal of Remote Sensing, vol. 28, no. 18, pp. 3995–4012, 2007.
[44]
Q. P. Xu, J. B. Boisvert, N. Tremblay, F. Bonn, and R. J. Brown, “évaluation des hyperfréquences pour le suivi de la teneur en eau et des cultures dans les histosols,” Canadian Journal of Remote Sensing, vol. 24, no. 1, pp. 43–53, 1998.
[45]
H. Geng, Q. H. J. Gwyn, B. Brisco, J. B. Boisvert, and R. J. Brown, “Mapping of soil moisture from C-band radar images,” Canadian Journal of Remote Sensing, vol. 22, no. 1, pp. 117–126, 1996.
[46]
L. Lamontagne, A. Martin, and M. C. Nolin, “étude pédologique du bassin versant du Bras d'Henri (Québec),” Laboratoires de pédologie et d’agriculture de précision, Centre de recherche et de développement sur les sols et les grandes cultures, Service national d’information sur les terres et les eaux. Direction générale de la recherche. Agriculture et Agroalimentaire Canada, Québec, Canada, 2009.
[47]
L. Lamontagne and M. C. Nolin, Cadre Pédologique de Référence pour la Corrélation des Sols, Bulletin d'extension numéro 7, équipe pédologique du Québec, Centre de recherches et de développement sur les sols et les grandes cultures, Agriculture et Agroalimentaire Canada, Sainte-Foy, Canada, 1997.
[48]
G. C. Topp, “Soil water content,” in Soil Sampling and Methods of Analysis, M. R. Carter, Ed., pp. 541–557, Canadian Society of Soil Science, Lewis Publishers, Boca Raton, Fla, USA, 1993.
[49]
Soil Classification Working Group, The Canadian System of Soil Classification, Agriculture and Agri-Food Canada, Ottawa, Canada, 3rd edition, 1998, Publication 1646 (Revised).
[50]
A. K. Fung and K. S. Chen, “Dependence of the surface backscattering coefficients on roughness, frequency and polarization states,” International Journal of Remote Sensing, vol. 13, no. 9, pp. 1663–1680, 1992.
[51]
N. Baghdadi, C. King, A. Bourguignon, and A. Remond, “Potential of ERS and Radarsat data for surface roughness monitoring over bare agricultural fields: application to catchments in Northern France,” International Journal of Remote Sensing, vol. 23, no. 17, pp. 3427–3442, 2002.
[52]
N. Holah, N. Baghdadi, M. Zribi, A. Bruand, and C. King, “Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields,” Remote Sensing of Environment, vol. 96, no. 1, pp. 78–86, 2005.
[53]
T. Toutin, “La correction géométrique rigoureuse : un mal nécessaire pour la santé de vos résultats,” Canadian Journal of Remote Sensing, vol. 22, no. 2, pp. 184–189, 1996.
[54]
H. Rott and G. Domik, “The SAR-580 experiment on snow and glaciers at the Austrian test site,” Final Report, European SAR-580 Campaig, JRC, Ispra, Italy, 1984.
[55]
N. Baghdadi, C. E. Livingstone, and M. Bernier, “Airborne C-band SAR measurements of wet snow-covered areas,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 6, pp. 1977–1981, 1998.
[56]
V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, “A model for radar images and its application to adaptive digital filtering of multiplicative noise,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4, no. 2, pp. 157–165, 1982.
[57]
F. T. Ulaby, P. P. Batlivala, and M. C. Dobson, “Microwave backscatter dependence on surface roughness, soil moisture and soil texture—part I. Bare soil,” IEEE Transactionon Geoscience Electroncs, vol. 16, pp. 286–295, 1978.
[58]
R. D. Martin Jr., A. Ghanssem, and E. T. Kanemasu, “C-band scatterometer measurements of a tall grass prairie,” Remote Sensing of Environment, vol. 29, no. 3, pp. 281–292, 1989.
[59]
L. P. Simmonds and E. J. Burke, “Estimating near-surface soil water content from passive microwave remote sensing—an application of MICRO-SWEAT,” Hydrological Sciences Journal, vol. 43, no. 4, pp. 521–534, 1998.
[60]
M. Bernier, J. P. Fortin, Y. Gautier, R. Gautier, R. Royand, and P. Vincent, “Determination of snow water equivalent using radarsat data in eastern Canada,” Hydrological Processes, vol. 13, no. 18, pp. 3041–3051, 1999.
[61]
K. M. Hinkel and S. I. Outcalt, “Identification of heat-transfer processes during soil cooling, freezing, and thawing in central Alaska,” Permafrost and Periglacial Processes, vol. 5, no. 4, pp. 217–235, 1994.
[62]
R. Paquin, “Survie à l'hiver des plantes fourragères et des céréales sous les climats nordiques, en particulier au Québec: progrès et prospectives,” Phytoprotection, vol. 66, pp. 105–139, 1985.
[63]
T. Zhang, T. E. Osterkamp, and K. Stamnes, “Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime,” Water Resources Research, vol. 32, no. 7, pp. 2075–2086, 1996.
[64]
Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, UK, 1975.
[65]
R. A. Montserud and R. Leamans, “Comparing global vegetation maps with the Kappa statistic,” Ecological Modelling, vol. 62, no. 4, pp. 275–293, 1992.