全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Remarks on the Complexity of Signed k-Domination on Graphs

DOI: 10.4236/jamp.2015.31005, PP. 32-37

Keywords: Graph Algorithm, Signed k-Domination, Strongly Chordal Graph, Tree, Fixed Parameter Tractable

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chordal comparability graphs.

References

[1]  Wang, C. (2012) The Signed k-Domination Numbers in Graphs. Ars Combinatoria, 106, 205-211.
[2]  Hattingh, J.H., Henning, M.A. and Slater, P.J. (1995) The Algorithmic Complexity of Signed Domination in Graphs. Australasian Journal of Combinatorics, 12, 101-112.
[3]  Lee, C.-M. and Chang, M.-S. (2008) Variations of Y-Dominating Functions on Graphs. Discrete Mathematics, 308, 4185-4204. http://dx.doi.org/10.1016/j.disc.2007.08.080
[4]  Lee, C.-M. (2014) Remarks on the Complexity of Non-negative Signed Domination. Journal of Networks, 9, 2051- 2058. http://dx.doi.org/10.4304/jnw.9.8.2051-2058
[5]  Brandst?dt, A., Dragan, F.F., Chepoi, V.D. and Voloshin, V. (1998) Dually Chordal Graphs. SIAM Journal on Discrete Mathematics, 11, 437-455. http://dx.doi.org/10.1137/S0895480193253415
[6]  Cai, L., Chen, J., Downey, R.G. and Fellows, M.R. (1997) Advice Classes of Parameterized Tractability. Annals of Pure and Applied Logic, 84, 119-138. http://dx.doi.org/10.1016/S0168-0072(95)00020-8
[7]  Downey, R.G. and Fellows, M.R. (1999) Parameterized Complexity. Monographs in Computer Science, Springer- Verlag.
[8]  Moscarini, M. (1993) Doubly Chordal Graphs, Steiner Trees, and Connected Domination. Networks, 23, 59-69. http://dx.doi.org/10.1002/net.3230230108
[9]  Rose, D.J. (1970) Triangulated Graphs and the Elimination Process. Journal of Mathematical Analysis and Applications, 32, 597-609. http://dx.doi.org/10.1016/0022-247X(70)90282-9
[10]  Farber, M. (1983) Characterizations of Strongly Chordal Graphs. Discrete Mathematics, 43, 173-189. http://dx.doi.org/10.1016/0012-365X(83)90154-1
[11]  Paige, R. and Tarjan, R.E. (1987) Three Partition Refinement Algorithms. SIAM Journal on Computing, 16, 973-989. http://dx.doi.org/10.1137/0216062
[12]  Spinrad, J.P. (1993) Doubly Lexical Ordering of Dense 0-1 Matrices. Information Processing Letters, 45, 229-235. http://dx.doi.org/10.1016/0020-0190(93)90209-R
[13]  Brandst?dt, A., Le, V.B. and Spinrad, J.P. (1999) Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia 1999. http://dx.doi.org/10.1137/1.9780898719796
[14]  Tarjan, R.E. and Yannakakis, M. (1984) Simple Linear Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM Joural on Computing, 13, 566-579. http://dx.doi.org/10.1137/0213035
[15]  Booth, S. and Lueker, S. (1976) Testing for the Consecutive Ones Property, Interval Graphs, Graph Planarity Using PQ-Trees Algorithms. Journal of Computer and System Sciences, 13, 335-379. http://dx.doi.org/10.1016/S0022-0000(76)80045-1
[16]  Borie, R.B. and Spinrad, J.P. (1999) Construction of a Simple Elimination Scheme for a Chordal Comparability Graph in Linear Time. Discrete Applied Mathematics, 91, 287-292. http://dx.doi.org/10.1016/S0166-218X(98)00137-1
[17]  Sawada, J. and Spinrad, J.P. (2003) From a Simple Elimination Ordering to a Strong Elimination Ordering in Linear Time. Information Processing Letters, 86, 299-302. http://dx.doi.org/10.1016/S0020-0190(03)00228-X
[18]  Chang, M.-S., Hsieh, S.-Y. and Chen, G.-H. (1997) Dynamic Programming on Distance-Hereditary Graphs. Proceedings of the 8th International Symposium o Algorithms and Computation, Lecture Notes in Computer Science, Vol. 1350, 344-353.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133