全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of a Novel Discrete-Time MRAC Based Motion Cueing on Loss of Control at a Hexapod Driving Simulator

DOI: 10.4236/ica.2015.61010, PP. 84-102

Keywords: Driving Simulator, EMG Analysis, Model Reference Adaptive Control, Discrete-Time Control, Loss of Control, Head Dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this paper is to present the advantages of Model reference adaptive control (MRAC) motion cueing algorithm against the classical motion cueing algorithm in terms of biomechanical reactions of the participants during the critical maneuvers like chicane in driving simulator real-time. This study proposes a method and an experimental validation to analyze the vestibular and neuromuscular dynamics responses of the drivers with respect to the type of the control used at the hexapod driving simulator. For each situation, the EMG (electromyography) data were registered from arm muscles of the drivers (flexor carpi radialis, brachioradialis). In addition, the roll velocity perception thresholds (RVT) and roll velocities (RV) were computed from the real-time vestibular level measurements from the drivers via a motion-tracking sensor. In order to process the data of the EMG and RVT, Pearson’s correlation and a two-way ANOVA with a significance level of 0.05 were assigned. Moreover, the relationships of arm muscle power and roll velocity with vehicle CG (center of gravity) lateral displacement were analyzed in order to assess the agility/alertness level of the drivers as well as the vehicle loss of control characteristics with a confidence interval of 95%. The results showed that the MRAC algorithm avoided the loss of adhesion, loss of control (LOA, LOC) more reasonably compared to the classical motion cueing algorithm. According to our findings, the LOA avoidance decreased the neuromuscular-visual cues level conflict with MRAC algorithm. It also revealed that the neuromuscular-vehicle dynamics conflict has influence on visuo-vestibular conflict; however, the visuo-vestibular cue conflict does not influence the neuromuscular-vehicle dynamics interactions.

References

[1]  Aykent, B., Paillot, D., Merienne, F., Fang, Z. and Kemeny, A. (2011) Study of the Influence of Different Washout Algorithms on Simulator Sickness for Driving Simulation Task. Proceedings of the ASME 2011 World Conference on Innovative Virtual Reality WINVR2011, Milan, 331-341.
http://dx.doi.org/10.1115/WINVR2011-5545
[2]  Angelaki, D.E., Gu, Y. and DeAngelis, G.C. (2009) Multisensory Integration: Psychophysics, Neurophysiology, and Computation. Current Opinion in Neurobiology, 19, 452-458.
http://dx.doi.org/10.1016/j.conb.2009.06.008
[3]  Chen, D., Hart, J. and Vertegaal, R. (2007) Towards a Physiological Model of User Interruptability. IFIP International Federation for Information Processing, INTERACT 2007, 439-451.
[4]  Aykent, B., Paillot, D., Merienne, F., Fang, Z. and Kemeny, A. (2011) Study of the Influence of Different Washout Algorithms on Simulator Sickness for Driving Simulation Task. Proceedings of the ASME 2011 World Conference on Innovative Virtual Reality WINVR2011, Milan, 331-341.
http://dx.doi.org/10.1115/WINVR2011-5545
[5]  Dichgans, J. and Brandt, T. (1973) Optokinetic Motion Sickness and Pseudo-Coriolis Effects Induced by Moving Visual Stimuli. Acta Otolaryngologica, 76, 339-348.
http://dx.doi.org/10.3109/00016487309121519
[6]  Chen, D., Hart, J. and Vertegaal, R. (2007) Towards a Physiological Model of User Interruptability. IFIP International Federation for Information Processing, INTERACT 2007, 439-451.
[7]  DiZio, P. and Lackner, J.R. (1989) Perceived Self-Motion Elicited by Postrotary Head Tilts in a Varying Gravitoinertial Force Background. Perception & Psychophysics, 46, 114-118.
http://dx.doi.org/10.3758/BF03204970
[8]  Dichgans, J. and Brandt, T. (1973) Optokinetic Motion Sickness and Pseudo-Coriolis Effects Induced by Moving Visual Stimuli. Acta Otolaryngologica, 76, 339-348.
http://dx.doi.org/10.3109/00016487309121519
[9]  Nehaoua, L., Arioui, H., Espié, S. and Mohellebi, H. (2006) Motion Cueing Algorithms for Small Driving Simulator. IEEE International Conference in Robotics and Automation (ICRA06), Orlando.
[10]  DiZio, P. and Lackner, J.R. (1989) Perceived Self-Motion Elicited by Postrotary Head Tilts in a Varying Gravitoinertial Force Background. Perception & Psychophysics, 46, 114-118.
http://dx.doi.org/10.3758/BF03204970
[11]  Kemeny, A. (2014) From Driving Simulation to Virtual Reality. Proceedings of the 2014 Virtual Reality International Conference, 32.
[12]  Nehaoua, L., Arioui, H., Espié, S. and Mohellebi, H. (2006) Motion Cueing Algorithms for Small Driving Simulator. IEEE International Conference in Robotics and Automation (ICRA06), Orlando.
[13]  Benson, A.J., Hutt, E.C. and Brown, S.F. (1989) Thresholds for the Perception of Whole Body Angular Movement about a Vertical Axis. Aviation, Space, and Environmental Medicine, 60, 205-213.
http://psycnet.apa.org/psycinfo/1989-21186-001
[14]  Kemeny, A. (2014) From Driving Simulation to Virtual Reality. Proceedings of the 2014 Virtual Reality International Conference, 32.
[15]  Guedry Jr., F.E. (1964) Visual Control of Habituation to Complex Vestibular Stimulation in Man. Bureau of Medicine and Surgery, Project MR005.13-6001, Subtask 1 Report No. 95, NASA Order No. R-93, US Naval School of Aviation Medicine, US Naval Aviation Medical Center, Pensacola, 1-16.
http://informahealthcare.com/doi/abs/10.3109/00016486409121398
[16]  Benson, A.J., Hutt, E.C. and Brown, S.F. (1989) Thresholds for the Perception of Whole Body Angular Movement about a Vertical Axis. Aviation, Space, and Environmental Medicine, 60, 205-213.
http://psycnet.apa.org/psycinfo/1989-21186-001
[17]  Guedry, F.E. and Montague, E.K. (1961) Quantitative Evaluation of the Vestibular Coriolis Reaction. Aviation, Space, and Environmental Medicine, 32, 487-500.
http://eurekamag.com/research/025/329/025329418.php
[18]  Guedry Jr., F.E. (1964) Visual Control of Habituation to Complex Vestibular Stimulation in Man. Bureau of Medicine and Surgery, Project MR005.13-6001, Subtask 1 Report No. 95, NASA Order No. R-93, US Naval School of Aviation Medicine, US Naval Aviation Medical Center, Pensacola, 1-16.
http://informahealthcare.com/doi/abs/10.3109/00016486409121398
[19]  Wiederhold, B.K. and Bouchard, S. (2014) Sickness in Virtual Reality. Advances in Virtual Reality and Anxiety Disorders, 35-62.
http://dx.doi.org/10.1007/978-1-4899-8023-6_3
[20]  Guedry, F.E. and Montague, E.K. (1961) Quantitative Evaluation of the Vestibular Coriolis Reaction. Aviation, Space, and Environmental Medicine, 32, 487-500.
http://eurekamag.com/research/025/329/025329418.php
[21]  DiZio, P. and Lackner, J.R. (1988) The Effects of Gravitoinertial Force Level and Head Movements on Post-Rotational Nystagmus and Illusory After-Rotation. Experimental Brain Research, 70, 485-495.
http://dx.doi.org/10.1007/BF00247597
[22]  Wiederhold, B.K. and Bouchard, S. (2014) Sickness in Virtual Reality. Advances in Virtual Reality and Anxiety Disorders, 35-62.
http://dx.doi.org/10.1007/978-1-4899-8023-6_3
[23]  DiZio, P. and Lackner, J.R. (1988) The Effects of Gravitoinertial Force Level and Head Movements on Post-Rotational Nystagmus and Illusory After-Rotation. Experimental Brain Research, 70, 485-495.
http://dx.doi.org/10.1007/BF00247597
[24]  Kolasinski, E.M. (1995) Simulator Sickness in Virtual Environments. Army Project Number 2O262785A791, Education and Training Technology.
[25]  Kolasinski, E.M. (1995) Simulator Sickness in Virtual Environments. Army Project Number 2O262785A791, Education and Training Technology.
[26]  Asadi, H., Mohammadi, A., Mohamed, S. and Nahavandi, S. (2014) Adaptive Translational Cueing Motion Algorithm Using Fuzzy Based Tilt Coordination. Neural Information Processing, Springer International Publishing, Berlin, 474-482.
[27]  Curry, R., Artz, B., Cathey, L., Grant, P. and Greenberg, J. (2002) Kennedy SSQ Results: Fixed-vs Motion-Based FORD Simulators. Proceedings of Driving Simulation Conference, Paris, 11-13 September 2002, 289-300.
[28]  Asadi, H., Mohammadi, A., Mohamed, S. and Nahavandi, S. (2014) Adaptive Translational Cueing Motion Algorithm Using Fuzzy Based Tilt Coordination. Neural Information Processing, Springer International Publishing, Berlin, 474-482.
[29]  Kim, M.S., Moon, Y.G., Kim, G.D. and Lee, M.C. (2010) Partial Range Scaling Method Based Washout Algorithm for a Vehicle Driving Simulator and Its Evaluation. International Journal of Automotive Technology, 11, 269-275.
http://dx.doi.org/10.1007/s12239-010-0034-0
[30]  Curry, R., Artz, B., Cathey, L., Grant, P. and Greenberg, J. (2002) Kennedy SSQ Results: Fixed-vs Motion-Based FORD Simulators. Proceedings of Driving Simulation Conference, Paris, 11-13 September 2002, 289-300.
[31]  MOOG FCS, 6 DOF Motion System (2006) Motion Drive Algorithm (MDA) Software Tuning Manual Version 1.0. Document No: LSF-0468, Revision: A.
[32]  Kim, M.S., Moon, Y.G., Kim, G.D. and Lee, M.C. (2010) Partial Range Scaling Method Based Washout Algorithm for a Vehicle Driving Simulator and Its Evaluation. International Journal of Automotive Technology, 11, 269-275.
http://dx.doi.org/10.1007/s12239-010-0034-0
[33]  Siegler, I., Reymond, G., Kemeny, A. and Berthoz, A. (2001) Sensorimotor Integration in a Driving Simulator: Contributions of Motion Cueing in Elementary Driving Tasks. Proceedings of Driving Simulation Conference, Sophia-Antipolis, 5-7 September 2001, 21-32.
[34]  MOOG FCS, 6 DOF Motion System (2006) Motion Drive Algorithm (MDA) Software Tuning Manual Version 1.0. Document No: LSF-0468, Revision: A.
[35]  Meywerk, M., Aykent, B. and Tomaske, W. (2009) Einfluss der Fahrdynamik-regelung auf die Sicherheit von N1-Fahrzeugen bei unterschiedlichen Bela-dungszustanden. Teil 1: Grundlagen, Unfallstatistik, Abstütz-und Beladungs-einrichtung, Fahrzeugdatenermittlung. FE 82.329/2007.
http://bast.opus.hbz-nrw.de/frontdoor.php?source_opus=354&la=de
[36]  Siegler, I., Reymond, G., Kemeny, A. and Berthoz, A. (2001) Sensorimotor Integration in a Driving Simulator: Contributions of Motion Cueing in Elementary Driving Tasks. Proceedings of Driving Simulation Conference, Sophia-Antipolis, 5-7 September 2001, 21-32.
[37]  Meywerk, M., Aykent, B. and Tomaske, W. (2009) Einfluss der Fahrdynamik-regelung auf die Sicherheit von N1-Fahrzeugen bei unterschiedlichen Bela-dungszustanden. Teil 2: Fahrversuche und Fahrsimulatorversuche. FE 82.329/ 2007.
http://bast.opus.hbz-nrw.de/frontdoor.php?source_opus=355&la=de
[38]  Meywerk, M., Aykent, B. and Tomaske, W. (2009) Einfluss der Fahrdynamik-regelung auf die Sicherheit von N1-Fahrzeugen bei unterschiedlichen Bela-dungszustanden. Teil 1: Grundlagen, Unfallstatistik, Abstütz-und Beladungs-einrichtung, Fahrzeugdatenermittlung. FE 82.329/2007.
http://bast.opus.hbz-nrw.de/frontdoor.php?source_opus=354&la=de
[39]  AcqKnowledge 4 (2011) Software Guide For Life Science Research Applications, Data Acquisition and Analysis with BIOPAC MP Systems Reference Manual for AcqKnowledge 4.2 Software &MP150 or MP36R Hardware/ Firmware on Windows 7 or Vista or Mac OS X 10.4-10.6. 357-358.
[40]  Meywerk, M., Aykent, B. and Tomaske, W. (2009) Einfluss der Fahrdynamik-regelung auf die Sicherheit von N1-Fahrzeugen bei unterschiedlichen Bela-dungszustanden. Teil 2: Fahrversuche und Fahrsimulatorversuche. FE 82.329/ 2007.
http://bast.opus.hbz-nrw.de/frontdoor.php?source_opus=355&la=de
[41]  Benson, A.J. (1990) Sensory Functions and Limitations of the Vestibular Systems. In: Warren, R. and Wertheim, A.H., Eds., Perception and Control of Self-Motion, Laurence Erlbaum Associates, Hinsdale, 145-170.
[42]  AcqKnowledge 4 (2011) Software Guide For Life Science Research Applications, Data Acquisition and Analysis with BIOPAC MP Systems Reference Manual for AcqKnowledge 4.2 Software &MP150 or MP36R Hardware/ Firmware on Windows 7 or Vista or Mac OS X 10.4-10.6. 357-358.
[43]  Kemeny, A. and Panerai, F. (2003) Evaluating Perception in Driving Simulation Experiments. Trends in Cognitive Sciences, 7, 31-37.
http://dx.doi.org/10.1016/S1364-6613(02)00011-6
[44]  Benson, A.J. (1990) Sensory Functions and Limitations of the Vestibular Systems. In: Warren, R. and Wertheim, A.H., Eds., Perception and Control of Self-Motion, Laurence Erlbaum Associates, Hinsdale, 145-170.
[45]  Pick, A.J. (2004) Neuromuscular Dynamics and the Vehicle Steering Task. Ph.D. Dissertation, St Catharine’s College, Cambridge University Engineering Department, Cambridge.
[46]  Kemeny, A. and Panerai, F. (2003) Evaluating Perception in Driving Simulation Experiments. Trends in Cognitive Sciences, 7, 31-37.
http://dx.doi.org/10.1016/S1364-6613(02)00011-6
[47]  Aykent, B., Merienne, F., Paillot, D. and Kemeny, A. (2013) Influence of Inertial Stimulus on Visuo-Vestibular Cues Conflict for Lateral Dynamics at Driving Simulators. Journal of Ergonomics, 3, 1-7.
http://omicsgroup.org/journals/influence-of-inertial-stimulus-on-visuo-vestibular-cues-conflict-for-lateral-dynamics-at-driving-simulators-2165-7556.1000113.pdf
[48]  Pick, A.J. (2004) Neuromuscular Dynamics and the Vehicle Steering Task. Ph.D. Dissertation, St Catharine’s College, Cambridge University Engineering Department, Cambridge.
[49]  Duarte, M.A. and Ponce, R.F. (1997) Discrete-Time Combined Model Reference Adaptive Control. International Journal of Adaptive Control and Signal Processing, 11, 501-517.
http://dx.doi.org/10.1002/(SICI)1099-1115(199709)11:6<501::AID-ACS448>3.0.CO;2-G
[50]  Aykent, B., Merienne, F., Paillot, D. and Kemeny, A. (2013) Influence of Inertial Stimulus on Visuo-Vestibular Cues Conflict for Lateral Dynamics at Driving Simulators. Journal of Ergonomics, 3, 1-7.
http://omicsgroup.org/journals/influence-of-inertial-stimulus-on-visuo-vestibular-cues-conflict-for-lateral-dynamics-at-driving-simulators-2165-7556.1000113.pdf
[51]  Guo, J., Liu, Y. and Tao, G. (2009) Multivariable MRAC with State Feedback for Output Tracking. American Control Conference, Hyatt Regency Riverfront, PaperWeA18.5, St. Louis, 10-12 June 2009, 592-597.
[52]  Duarte, M.A. and Ponce, R.F. (1997) Discrete-Time Combined Model Reference Adaptive Control. International Journal of Adaptive Control and Signal Processing, 11, 501-517.
http://dx.doi.org/10.1002/(SICI)1099-1115(199709)11:6<501::AID-ACS448>3.0.CO;2-G
[53]  Ioannou, P.A. and Sun, J. (1995) Robust Adaptive Control. Prentice-Hall Inc., Upper Saddle River, 313-408.
[54]  Guo, J., Liu, Y. and Tao, G. (2009) Multivariable MRAC with State Feedback for Output Tracking. American Control Conference, Hyatt Regency Riverfront, PaperWeA18.5, St. Louis, 10-12 June 2009, 592-597.
[55]  Maiti, D., Guo, J. and Tao, G. (2011) A Discrete-Time Multivariable State Feedback MRAC Design with Application to Linearized Aircraft Models with Damage. American Control Conference, San Francisco, 29 June-1 July 2011, 606-611.
[56]  Ioannou, P.A. and Sun, J. (1995) Robust Adaptive Control. Prentice-Hall Inc., Upper Saddle River, 313-408.
[57]  Tao, G. and Ioannou, P.A. (1993) Model Reference Adaptive Control for Plants with Unknown Relative Degree. IEEE Transactions on Automatic Control, 38, 976-982.
http://dx.doi.org/10.1109/9.222314
[58]  Maiti, D., Guo, J. and Tao, G. (2011) A Discrete-Time Multivariable State Feedback MRAC Design with Application to Linearized Aircraft Models with Damage. American Control Conference, San Francisco, 29 June-1 July 2011, 606-611.
[59]  Tao, G. (2003) Adaptive Control Design and Analysis. John Wiley and Sons, New York.
http://dx.doi.org/10.1002/0471459100
[60]  Tao, G. and Ioannou, P.A. (1993) Model Reference Adaptive Control for Plants with Unknown Relative Degree. IEEE Transactions on Automatic Control, 38, 976-982.
http://dx.doi.org/10.1109/9.222314
[61]  Katz, A. (1996) Computational Rigid Vehicle Dynamics. Krieger Publishing Co., Malabar.
[62]  Tao, G. (2003) Adaptive Control Design and Analysis. John Wiley and Sons, New York.
http://dx.doi.org/10.1002/0471459100
[63]  Kuipers, J.B. (1999) Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Princeton.
[64]  Katz, A. (1996) Computational Rigid Vehicle Dynamics. Krieger Publishing Co., Malabar.
[65]  Mesh Electromyography (2015) National Library of Medicine—Medical Subject Headings, Mesh.
http://www.ncbi.nlm.nih.gov/mesh/68004576
[66]  Kuipers, J.B. (1999) Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University Press, Princeton.
[67]  Oman, C. (1989) Sensory Conflict in Motion Sickness: An Observer Theory Approach. NASA, Ames Research Center, Spatial Displays and Spatial Instruments, 15 p.
[68]  Mesh Electromyography (2015) National Library of Medicine—Medical Subject Headings, Mesh.
http://www.ncbi.nlm.nih.gov/mesh/68004576
[69]  Oman, C. (1990) Motion Sickness: A Synthesis and Evaluation of the sensory Conflict Theory. Canadian Journal of Physiology and Pharmacology, 68, 294-303. http://dx.doi.org/10.1139/y90-044
[70]  Oman, C. (1989) Sensory Conflict in Motion Sickness: An Observer Theory Approach. NASA, Ames Research Center, Spatial Displays and Spatial Instruments, 15 p.
[71]  Electronic Code of Federal Regulations (2015) Title 49: Transportation Part 571—Federal Motor Vehicle Safety Standards Subpart B—Federal Motor Vehicle Safety Standards § 571.126 Standard No. 126; Electronic Stability Control Systems. US Government Printing Office, Electronic Code of Federal Regulations.
http://www.ecfr.gov/cgi-bin/text-idx?SID=6099cd0521e2251f35642c554b1c3001&node=pt49.6.571&rgn=div5#se49.6.571_1126
[72]  Oman, C. (1990) Motion Sickness: A Synthesis and Evaluation of the sensory Conflict Theory. Canadian Journal of Physiology and Pharmacology, 68, 294-303. http://dx.doi.org/10.1139/y90-044
[73]  Fu, W., Liu, Y., Zhang, S., Xiong, X.J. and Wei, S.T. (2012) Effects of Local Elastic Compression on Muscle Strength, Electromyographic, and Mechanomyographic Responses in the Lower Extremity. Journal of Electromyography and Kinesiology, 22, 44-50.
http://dx.doi.org/10.1016/j.jelekin.2011.10.005
[74]  Electronic Code of Federal Regulations (2015) Title 49: Transportation Part 571—Federal Motor Vehicle Safety Standards Subpart B—Federal Motor Vehicle Safety Standards § 571.126 Standard No. 126; Electronic Stability Control Systems. US Government Printing Office, Electronic Code of Federal Regulations.
http://www.ecfr.gov/cgi-bin/text-idx?SID=6099cd0521e2251f35642c554b1c3001&node=pt49.6.571&rgn=div5#se49.6.571_1126
[75]  Fu, W., Liu, Y., Zhang, S., Xiong, X.J. and Wei, S.T. (2012) Effects of Local Elastic Compression on Muscle Strength, Electromyographic, and Mechanomyographic Responses in the Lower Extremity. Journal of Electromyography and Kinesiology, 22, 44-50.
http://dx.doi.org/10.1016/j.jelekin.2011.10.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133