Roughened aeroengine blade surfaces lead to increased friction losses and reduced efficiency of the individual blades. The surface roughness also affects the wake flow of the blade and thus the inflow conditions for the subsequent compressor or turbine stage. To investigate the impact of surface roughness on a turbulent blade wake, we conducted velocity field measurements by means of stereo particle image velocimetry in the wake of a roughened turbine blade in a linear cascade wind tunnel. The turbine blade was roughened at different chordwise locations. The influence of the chordwise location of the added surface roughness was examined by comparing their impact on the width and depth of the wake and, the positions and distribution of vortical structures in the wake. Additionally, the friction loss coefficients for different surface roughness positions were estimated directly from the velocity field. 1. Introduction The aerodynamics of multistage turbomachinery is extremely complex due to the inherent unsteadiness and three-dimensionality of the internal flow. Designing aerodynamically efficient aeroengines is a challenging task that requires detailed knowledge about unsteady boundary development and transition [1, 2], the structure of blade wakes [3, 4], and the interaction of these wakes with downstream blades [5, 6]. The dominating unsteadiness of the internal engine flow results from the relative motion of rotor and stator blades and is periodic in nature. Additionally, turbulent inflow conditions and variations of the blades’ geometry and surface roughness within a turbine or compressor stage lead to aperiodic fluctuations of the flow. Although the stochastic fluctuations are generally smaller in amplitude than the periodic variations, they can have significant influence on the aerodynamic [7, 8], aeroacoustic [9], and aeroelastic properties [10, 11] of turbines and compressors. Surface roughness on aeroengine blades can be induced by manufacturing or repair processes and by operational and environmental conditions. It reduces the blades’ efficiency by increasing the boundary layer momentum loss and blade skin friction and by precipitating boundary layer transition. At high Reynolds numbers, surface roughness also raises the odds for flow separation to occur, leading to further increased losses. The influence of surface roughness on a particular blade does not only affect that blade’s efficiency, but also reaches even further by affecting the wake flow and thus the inflow conditions for subsequent compressor or turbines stages. To allow for
References
[1]
R. D. Stieger and H. P. Hodson, “The transition mechanism of highly loaded low-pressure turbine blades,” Journal of Turbomachinery, vol. 126, no. 4, pp. 536–543, 2004.
[2]
H. P. Hodson and R. J. Howell, “Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines,” Annual Review of Fluid Mechanics, vol. 37, no. 1, pp. 71–98, 2005.
[3]
Y.-C. Chow, O. Uzol, J. Katz, and C. Meneveau, “Decomposition of the spatially filtered and ensemble averaged kinetic energy, the associated fluxes and scaling trends in a rotor wake,” Physics of Fluids, vol. 17, no. 8, 2005.
[4]
F. Soranna, Y.-C. Chow, O. Uzol, and J. Katz, “The effects of inlet guide vane-wake impingement on the boundary layer and the near-wake of a rotor blade,” Journal of Turbomachinery, vol. 132, no. 4, Article ID 041016, 13 pages, 2010.
[5]
Z. Gete and R. L. Evans, “An experimental investigation of unsteady turbulent-wake/boundary-layer interaction,” Journal of Fluids and Structures, vol. 17, no. 1, pp. 43–55, 2003.
[6]
L. Hilgenfeld and M. Pfitzner, “Unsteady boundary layer development due to wake passing effects on a highly loaded linear compressor cascade,” Journal of Turbomachinery, vol. 126, no. 4, pp. 493–500, 2004.
[7]
J. P. Bons, “A review of surface roughness effects in gas turbines,” Journal of Turbomachinery, vol. 132, no. 2, Article ID 021004, 2010.
[8]
Q. Zhang, S. Woo Lee, and P. M. Ligrani, “Effects of surface roughness and turbulence intensity on the aerodynamic losses produced by the suction surface of a simulated turbine airfoil,” Journal of Fluids Engineering, vol. 126, no. 2, pp. 257–265, 2004.
[9]
W. J. Devenport, J. K. Staubs, and A. L. Stewart, “Sound radiation from real airfoils in turbulence,” Journal of Sound and Vibration, vol. 329, no. 17, pp. 3470–3483, 2010.
[10]
H.-W. D. Chiang and R. E. Kielb, “An analysis system for blade forced response,” Journal of Turbomachinery, vol. 115, no. 4, pp. 762–770, 1993.
[11]
K. Ekici, R. E. Kielb, and K. C. Hall, “Aerodynamic asymmetry analysis of unsteady flows in turbomachinery,” Journal of Turbomachinery, vol. 132, no. 1, Article ID 011006, 2010.
[12]
S. Hohenstein, J. Aschenbruck, and J. Seume, “Aerodynamic effects of non-uniform surface roughness on a turbine blade,” in Proceedings of the ASME Turbo Expo : Turbine Technical Conference and Exposition (GT '13), San Antonio, Tex, USA, June 2013.
[13]
C. Lietmeyer, “Optimal application of riblets on compressor blades and their contamination behavior,” Journal of Turbomachinery, vol. 135, no. 1, Article ID 011036, 2012.
[14]
J. Hourmouziadis, “Aerodynamic design of low pressure turbines,” 1989.
[15]
M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics Series, Springer, 2007, http://books.google.de/books?id=WH5w2TvK2bQC.
[16]
D. Garcia, “A fast all-in-one metho d for automated post-processing of PIV data,” Experiments in Fluids, vol. 50, no. 5, pp. 1247–1259, 2010.
[17]
Q. Zhang, P. M. Ligrani, and S. W. Lee, “Determination of rough-surface skin friction coefficients from wake profile measurements,” Experiments in Fluids, vol. 35, no. 6, pp. 627–635, 2003.
[18]
L. Graftieaux, M. Michard, and G. Nathalie, “Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows,” Measurement Science and Technology, vol. 12, no. 9, pp. 1422–1429, 2001.
[19]
K. Mulleners and M. Raffel, “The onset of dynamic stall revisited,” Experiments in Fluids, vol. 52, no. 3, pp. 779–793, 2012.