The feasibility of disrupting a tumor’s vascular structure with various radiation types and radionuclides is investigated. Calculated absorbed dose profiles for photons and 4He ions suggest that low-energy beta-gamma and alpha emitting radionuclides can deposit sufficient absorbed dose to disrupt a tumor’s vascular structure while minimizing the dose outside the blood vessel. Candidate radionuclides uniformly distributed in microspheres are theoretically investigated with respect to their vascular disruption potential and to offer an alternative to 90Y microsphere therapy. Requisite activities of candidate low-energy beta-gamma and alpha emitting radionuclides to facilitate vascular disruption are calculated.
References
[1]
Amor-Coarasa A, Milera A, Carvajal D, Gulec S, McGoron AJ. 2014. 90Y-DOTA-CHS microspheres for live radiomicrosphere therapy: preliminary in vivo lung radiochemical stability studies. Journal of Radiotherapy 2014:1-6
[2]
Barrett KE, Barman SM, Boitano S, Brooks H. 2012. Ganong’s review of medical physiology (24th edition). New York: McGraw-Hill Medical.
[3]
Baum EM, Ernesti MC, Knox HD, Miller TR, Watson AM. 2010. Nuclides and isotopes chart of the nuclides (17th edition). Schnectady, NY: Knowles Atomic Power Laboratory.
[4]
Bethe H. 1930. Zur theorie des durchgangs schneller korpuskularstrahlung durch materie. Annalen der Physik (Leipzig) 5:325-400
[5]
Bevelacqua JJ. 2005. Systematics of heavy ion radiotherapy. Radiation Protection Management 22(6):4-13
[6]
Bevelacqua JJ. 2010a. Feasibility of using internal radiation-generating devices in radiotherapy. Health Physics 98:614-620
[7]
Bevelacqua JJ. 2010b. Basic health physics: problems and solutions (2nd edition). Weinheim: Wiley-VCH.
[8]
Bevelacqua JJ. 2012. Angular absorbed dose dependence of internal radiation-generating devices in radiotherapy. Health Physics 102:2-7
[9]
Bilbao RI, Reiser MF. 2008. Liver radioembolization with 90Y microspheres. Berlin: Springer.
[10]
Bittner M, Grosu A, Wiedenmann N, Wilkens JJ. 2013. A systematic review of antiproton radiotherapy. Frontiers in Physics 1:37
[11]
Burke PA, DeNardo SJ. 2001. Antiangiogenic agents and their promising potential in combined therapy. Critical Reviews in Oncology/Hematology 39:155-171
[12]
Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407:249-257
[13]
Carr BI. 2004. Hepatic arterial 90Y glass microspheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. Liver Transplantation 10:S107-S110
[14]
Chaudhury PK, Hassanain M, Bouteaud JM, Alcindor T, Nudo CG, Valenti D, Cabrera T, Kavan P, Feteih I, Metrakos P. 2010. Complete response of heptocellular carcinoma with sorafenib and 90Y radioembolization. Current Oncology 17(3):67-69
[15]
Dezarn WA, Cessna JT, DeWerd LA, Feng W, Gates VL, Halama J, Kennedy AS, Nag S, Sarfaraz M, Sehgal V, Selwyn R, Stabin MG, Thomadsen BR, Williams LE, Salem R. 2011. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Medical Physics 38(8):4824-4845
[16]
Folkman J. 1971. Tumor angiogenesis: therapeutic implications. New England Journal of Medicine 285:1182-1186
[17]
Grodstein GW. 1957. X-ray attenuation coefficients from 10 keV to 100 MeV. Washington, DC: National Bureau of Standards Circular 583.
[18]
Holzscheiter M, Bassler N, Agazaryan N, Beyer G, Blackmore E, DeMarco J, Doserm M, Durand R, Hartley O, Iwamoto K. 2006. The biological effectiveness of antiproton irradiation. Radiotherapy and Oncology Journal 81:233-242
[19]
ICRP Publication 116. 2010. Conversion coefficients for radiological protection quantities for external radiation exposures. Amsterdam: Elsevier.
[20]
Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, Benson A, Espat J, Bilbao JI, Sharma RA, Thomas JP, Caldwell D. 2007. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. International Journal of Radiation Oncology, Biology, Physics 68(1):13-23
[21]
Kennedy AS, Salem R. 2003. Comparison of two 90Y ttrium microsphere agents for hepatic artery brachytherapy. In: Proceedings of the 14th International Congress on Anti-Cancer Treatment. 1-156
[22]
Kraft G. 2000. Tumor therapy with heavy charged particles. Progress in Particle and Nuclear Physics 45:S473-S544
[23]
Lau WY, Lai EC, Leung TW. 2011. Current role of selective internal irradiation with yttrium-90 microspheres in the management of hepatocellular carcinoma: a systematic review. International Journal of Radiation Oncology, Biology, Physics 81(2):460-467
[24]
Lee IK, Seong J. 2012. The optimal selection of radiotherapy treatment for hepatocellular carcinoma. Gut and Liver 6(2):139-148
[25]
Less JR, Skalak TC, Sevick EM, Jain RK. 1991. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Research 51:265-273
[26]
Martinez AA, Gonzalez JA, Chung AK, Kestin LL, Balasubramaniam M, Diokno AC, Ziaja EL, Brabbins DS, Vicini FA. 2000. A comparison of external beam radiation therapy versus radical prostatectomy for patients with low risk prostate carcinoma diagnosed, staged and treated at a single institution. Cancer 88:425-432
National Cancer Action Team. 2012. National radiotherapy implementation group report. Image guided radiotherapy (IGRT): Guidance for implementation and use. London: NCAT.
[29]
NCRP Report No. 170. 2012. Second primary cancers and cardiovascular disease after radiation therapy. Bethesda, MD: NCRP Publications.
Radiation Safety Information Computational Center. 1985. Computer Code Collection: Code Package CCC-228, SPAR. Calculation of stopping powers and ranges for muons, charged pions, protons, and heavy ions. Oak Ridge, TN: Oak Ridge National Laboratory. Available at: http://rsicc.ornl.gov/
[32]
Rajput MS, Agrawal P. 2010. Microspheres in cancer therapy. Indian Journal of Cancer 47:458-468
[33]
Rittmann PD. 2004. ISO-PC Version 2.2-User’s Guide. Richland, WA: Fluor Government Group.
[34]
Shen WQ, Wang B, Feng J, Zhan WL, Zhu YT, Feng EP. 1989. Total reaction cross section for heavy-ion collisions and its relation to the neutron excess degree of freedom. Nuclear Physics A 491:130-146
[35]
Shleien B, Slaback LA, Birky BK. 1998. Handbook of health physics and radiological health (3rd edition). Baltimore: Lippincott, Williams, and Wilkins.
[36]
Siemann DW. 2002. Vascular targeting agents. Horizons in Cancer Therapeutics: From Bench to Bedside 3:4-15
[37]
Travish G, Yoder RB. 2011. Laser-powered dielectric-structures for the production of high-brightness electron and x-ray beams. Proc. SPIE 8079:80790K-80790L
[38]
Trubey DK. 1988. New gamma-ray buildup factor data for point kernel calculations: ANS-6.4.3 standard reference data (ORNL/RSIC-49). Oak Ridge, TN: Oak Ridge National Laboratory.
[39]
Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P. 2002. Hypoxia as a target for combined modality treatments. European Journal of Cancer 38:240-257