全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lifestyle Influence on the Content of Copper, Zinc and Rubidium in Wild Mushrooms

DOI: 10.1155/2012/687160

Full-Text   Cite this paper   Add to My Lib

Abstract:

The concentration of 18 trace elements in several species of fungi (arranged in three groups: ectomycorrhizae, saprobes, and epiphytes) has been determined. The measurements were made using the methodology of X-ray fluorescence. Higher contents of Cu and Rb (with statistical support) have been found in the ectomycorrhizal species. The Zn content reached higher concentrations in the saprophytic species. According to the normality test and the search for outliers, the species Clitocybe maxima and Suillus bellini accumulate large amounts of Cu and Rb, respectively, so that both can be named as “outliers.” The leftwards displacement of the density curves and their nonnormality are attributed to the presence of these two species, which exhibit hyperaccumulation skills for Cu and Rb, respectively. Regarding Zn absorption, no particular species were classified as outlier; therefore it can be assumed that the observed differences between the different groups of fungi are due to differences in their nutritional physiology. 1. Introduction Fungi are vital to ecosystem health as they play crucial roles in the geochemical cycles, element mobilization, and organic matter decomposition. As mycorrhizas they can improve plant growth by increasing uptake of nutrients, and as saprobes they are related to the recycling of biomass mineral constituents [1, 2]. Special mention deserves their role as wood decay agents since very little species of other groups of organisms are capable to attack recalcitrant substances such as cellulose or lignin. Because of the vital importance of fungi to the well-being of an entire ecosystem, the interaction of fungi with the organic and inorganic substrate should be traced. Over the last few years many articles have been published on the subject of elemental content in sporocarps of wild fungi. Some of them were focused on the perspective of the nutritional skills, or toxicity, when consumed by humans [3–10] and others tried to settle differences between different species or places [11, 12]. There are also some recent papers on the subject of the weathering properties of wild mushrooms and their relation with the mineral particles of the soil [13–18]. Some studies have shown a correlation between fungal metal concentrations and point sources of metal pollution such as smelters or roadsides [19, 20]. The sporocarps of basidiomycetes have a collection of morphological features, by which we can identify and discriminate the species, and also a short lifetime, generally no more than 7-8 days, although the mycelium may live for many years. Thus,

References

[1]  V. Wiemken, “Contributions of studies with in vitro culture systems to the understanding of the ectomycorrhizal symbiosis,” in Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, A. Varma and B. Hock, Eds., Springer-Verlag, New York, NY, USA, 1995.
[2]  P. E. Courty, M. Buée, A. G. Diedhiou et al., “The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts,” Soil Biology and Biochemistry, vol. 42, no. 5, pp. 679–698, 2010.
[3]  D. Mendil, O. D. Ulu?zlü, E. Hasdemir, and A. ?a?lar, “Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey,” Food Chemistry, vol. 88, no. 2, pp. 281–285, 2004.
[4]  N. Dursun, M. M. ?zcan, et al., “Mineral contents of 34 species of edible mushrooms growing wild in Turkey,” Journal of the Science of Food and Agriculture, vol. 86, no. 7, pp. 1087–1094, 2006.
[5]  L. Cocchi, L. Vescovi, L. E. Petrini, and O. Petrini, “Heavy metals in edible mushrooms in Italy,” Food Chemistry, vol. 98, no. 2, pp. 277–284, 2006.
[6]  P. K. Ouzouni, P. G. Veltsistas, E. K. Paleologos, and K. A. Riganakos, “Determination of metal content in wild edible mushroom species from regions of Greece,” Journal of Food Composition and Analysis, vol. 20, no. 6, pp. 480–486, 2007.
[7]  K. Chudzyński and J. Falandysz, “Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom,” Chemosphere, vol. 73, no. 8, pp. 1230–1239, 2008.
[8]  J. J. Falandysz, T. Kunito, R. Kubota et al., “Some mineral constituents of Parasol mushroom (Macrolepiota procera),” Journal of Environmental Science and Health, Part B, vol. 43, pp. 187–192, 2008.
[9]  P. Kala?, “Chemical composition and nutritional value of European species of wild growing mushrooms: a review,” Food Chemistry, vol. 113, no. 1, pp. 9–16, 2009.
[10]  P. Kala?, “Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009,” Food Chemistry, vol. 122, no. 1, pp. 2–15, 2010.
[11]  G. Tyler, “Metal accumulation by wood-decaying fungi,” Chemosphere, vol. 11, no. 11, pp. 1141–1146, 1982.
[12]  J. Vetter, “Mineral composition of basidiomes of Amanita species,” Mycological Research, vol. 109, no. 6, pp. 746–750, 2005.
[13]  R. Landeweert, E. Hoffland, R. D. Finlay, T. W. Kuyper, and N. Van Breemen, “Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals,” Trends in Ecology and Evolution, vol. 16, no. 5, pp. 248–254, 2001.
[14]  E. Hoffland, T. W. Kuyper, H. Wallander et al., “The role of fungi in weathering,” Frontiers in Ecology and the Environment, vol. 2, pp. 258–264, 2004.
[15]  G. M. Gadd, Fungi in Biogeochemical Cycles, Cambridge University Press, Cambridge, UK, 2006.
[16]  G. M. Gadd, “Global biogeochemical cycling: fungi and their role in the biosphere,” in Encyclopedia of Ecology, Elsevier, Amsterdam, The Netherlands, 2007.
[17]  R. Amundson, D. D. Richter, G. S. Humphreys, E. G. Jobbágy, and J. Gaillardet, “Coupling between biota and earth materials in the critical zone,” Elements, vol. 3, no. 5, pp. 327–332, 2007.
[18]  L. van Sch?ll, T. W. Kuyper, M. M. Smits, R. Landeweert, E. Hoffland, and N. V. Breemen, “Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles,” Plant and Soil, vol. 303, no. 1-2, pp. 35–47, 2008.
[19]  J. D. McCreight and D. B. Schroeder, “Cadmium, lead and nickel content of Lycoperdon perlatum Pers. in a roadside environment,” Environmental Pollution, vol. 13, no. 4, pp. 265–268, 1977.
[20]  R. Bargagli and F. Baldi, “Mercury and methyl mercury in higher fungi and their relation with the substrata in a cinnabar mining area,” Chemosphere, vol. 13, no. 9, pp. 1059–1071, 1984.
[21]  F. D. Calonge, G. Moreno, et al., “Flora Micológica de Castilla La Mancha. Situación actual y conservación de los hongos del bosque,” in Memoria Final (2004–2007), Hernandez-Crespo, Ed., Real Jardín Botánico CSIC, Madrid, Spain, 2008.
[22]  S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, pp. 591–611, 1965.
[23]  J. Borovi?ka, J. Kubrová, J. Rohovec, Z. ?anda, and C. E. Dunn, “Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?” BioMetals, vol. 24, no. 5, pp. 837–845, 2011.
[24]  J. A. Campos, N. A. Tejera, and C. J. Sánchez, “Substrate role in the accumulation of heavy metals in sporocarps of wild fungi,” BioMetals, vol. 22, no. 5, pp. 835–841, 2009.
[25]  J. A. Campos, “Nutrients and trace elements content of wood decay fungi isolated from oak (Quercus ilex),” Biological Trace Element Research, vol. 144, no. 1-3, pp. 1370–1380, 2011.
[26]  J. Alonso, M. A. García, M. Pérez-López, and M. J. Melgar, “The concentrations and bioconcentration factors of copper and zinc in edible mushrooms,” Archives of Environmental Contamination and Toxicology, vol. 44, no. 2, pp. 180–188, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133