Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.
References
[1]
Adkins JF, Henderson GM, Wang SL, O’Shea S, Mokadem F. 2004. Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth and Planetary Science Letters 227:481-490
[2]
Anagnostou E, Huang KF, You CF, Sikes EL, Sherrell RM. 2012. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth and Planetary Science Letters 349:251-260
[3]
Burke A, Robinson LF, McNichol AP, Jenkins WJ, Scanlon KM, Gerlach DS. 2010. Reconnaissance dating: a new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals. Deep-Sea Research Part I 57:1510-1520
[4]
Bustamante MS. 2009. The southern Chilean fjord region: oceanographic aspects. In: Hussermann V, Frsterra G, eds. Marine benthic fauna of chilean patagonia. Santiago: Nature In Focus. 53-60
[5]
Cairns SD. 1995. The marine fauna of New Zealand: Scleractinia (Cnidaria, Anthozoa) New Zealand Oceanographic Institute Memoir. 103: 210
[6]
Cairns SD. 2007. Deep-water corals: an overview with special reference to diversity and distribution of deep-water Scleractinian corals. Bulletin of Marine Science 81:311-322 Available at http://hdl.handle.net/10088/7536
[7]
Cairns SD, Hussermann V, Frsterra G. 2005. A review of the Scleractinia (Cnidaria : Anthozoa) of Chile, with the description of two new species. Zootaxa 1018:15-46 Available at http://hdl.handle.net/10088/127
[8]
Cairns SD, Stanley GDJ. 1982. Ahermatypic coral banks: living and fossil counterparts. In: Gomez ED, Birkeland CE, Buddemeier RW, Johannes RE, Marsh JA, Tsuda RT, eds. Proceedings of the 4th international coral reef symposium marine sciences center. Manila. University of the Philippines. 1:611-618 Available at http://hdl.handle.net/10088/7229
Cohen AL, Holcomb M. 2009. Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118-127
[11]
Davies AJ, Guinotte JM. 2011. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6:e18483
[12]
Davies AJ, Wisshak M, Orr JC, Roberts JM. 2008. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia) Deep-Sea Research Part I 55:1048-1062
[13]
Dávila PM, Figueroa D, Müller E. 2002. Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S) Continental Shelf Research 22:521-534
[14]
Dodds LA, Roberts JM, Taylor AC, Marubini F. 2007. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology 349:205-214
[15]
Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1:169-192
[16]
Dullo WC, Flgel S, Rüggeberg A. 2008. Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Marine Ecology Progress Series 371:165-176
[17]
Efron B, Tibshirani RJ. 1993. Permutation tests. In: An introduction to the bootstrap. New York: Chapman & Hall. 202-219
[18]
Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1:165-169
[19]
Farmer DM, Freeland HJ. 1983. The physical oceanography of fjords. Progress in Oceanography 12:147-219
[20]
Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362-366
[21]
Findlay HS, Artioli Y, Moreno Navas J, Hennige SJ, Wicks LC, Huvenne VA, Woodward EM, Roberts JM. 2013. Tidal downwelling and implications for the carbon biogeochemistry of cold-water corals in relation to future ocean acidification and warming. Global Change Biology In Press
[22]
Fink HG, Wienberg C, Hebbeln D, McGregor HV, Schmiedl G, Taviani M, Freiwald A. 2012. Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Research Part I 62:89-96
[23]
Form AU, Riebesell U. 2012. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology 18:843-853
[24]
Frsterra G. 2009. Ecological and biogeographical aspects of the Chilean fjord region. In: Hussermann V, Frsterra G, eds. Marine benthic fauna of chilean patagonia. Santiago: Nature In Focus. 61-76
[25]
Frsterra G, Beuck L, Hussermann V, Freiwald A. 2005. Shallow water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocenoses, the bioeroding community, heterotrophic interactions and (palaeo)-bathymetrical implications. In: Freiwald A, Roberts JM, eds. Cold-water corals and ecosystems. Berlin: Springer-Verlag. 937-977
[26]
Frsterra G, Hussermann V. 2003. First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zoologische Verhandelingen Leiden 345:117-128
[27]
Freiwald A, Foss JH, Grehan A, Koslow T, Roberts JM. 2004. Cold-water coral reefs. Out of sight - no longer out of mind. Cambridge: UNEP-WCMC. Available at http://www.unep-wcmc.org/biodiversity-series-22_103.html
[28]
González HE, Calderón MJ, Castro L, Clement A, Cuevas LA, Daneri G, Iriarte JL, Lizárraga L, Martínez R, Menschel A, Silva N, Carrasco C, Valenzuela C, Vargas CA, Molinet C. 2010. Primary production and plankton dynamics in the Reloncavi Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Marine Ecology Progress Series 402:13-30
[29]
Guinotte JM, Orr J, Cairns SD, Freiwald A, Morgan L, George R. 2006. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and the Environment 4:141-146
[30]
Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley S, Tedesco D, Buia MC. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96-99
[31]
Hassenrück C, Jantzen C, Frsterra G, Hussermann V, Willenz P. 2013. Rates of apical septal extension of Desmophyllum dianthus: effect of association with endolithic photo-autotrophs. Marine Biology
[32]
Hussermann V, Frsterra G. 2007. Large assemblages of cold-water corals in Chile: a summary of recent findings and potential impacts. In: George RY, Cairns SD, eds. Conservation and adaptive management of seamount and deep-sea coral ecosystems. Miami: Rosenstiel School of Marine and Atmospheric Science, University of Miami. 195-207
[33]
Heindel K, Titschack J, Dorschel B, Huvenne VAI, Freiwald A. 2010. The sediment composition and predictive mapping of facies on the Propeller Mound-A cold-water coral mound (Porcupine Seabight, NE Atlantic) Continental Shelf Research 30:1814-1829
[34]
Jantzen C, Hussermann V, Frsterra G, Laudien J, Ardelan M, Maier S, Richter C. 2013a. Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile) Marine Biology 160:2597-2607
[35]
Jantzen C, Laudien J, Sokol S, Frsterra G, Hussermann V, Kupprat F, Richter C. 2013b. In situ short-term growth rates of a cold-water coral. Marine and Freshwater Research 64:631-641
[36]
Jerosch K, Luedkte A, Pledge P, Paitich O, Kostylev VE. 2011. Automatic Seabed Image Analysis of Sediment Types: Mapping from Georeferenced Video Footage on the Labrador Shelf. Geological Survey of Canada, Open File 6752, 36 p. Available at http://donnees.gc.ca/data/en/dataset/24d3acbb-12f2-5f78-9ab1-2f047fc2effa
[37]
Lunden JJ, Georgian SE, Cordes EE. 2013. Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnology and Oceanography 58:354-362
[38]
Maier C, Hegeman J, Weinbauer MG, Gattuso JP. 2009. Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671-1680
[39]
Maier C, Schubert A, Berzunza Sánchez MM, Weinbauer MG, Watremez P, Gattuso JP. 2013. End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS ONE 8:e62655
[40]
Maier C, Watremez P, Taviani M, Weinbauer MG, Gattuso JP. 2012. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proceedings Biological Sciences/The Royal Society 279:1716-1723
[41]
Margolin AR, Robinson LF, Burke A, Waller RG, Scanlon KM, Roberts ML, Auro ME, van de Flierdt T. 2013. Temporal and spatial distributions of cold-water corals in the Drake Passage: insights from the last 35,000 years. Deep-Sea Research Part II In Press
[42]
Mayr CC, Frsterra G, Hussermann V, Wunderlich A, Grau J, Zieringer M, Altenbach AV. 2011. Stable isotope variability in a Chilean fjord food web: implications for N- and C-cycles. Marine Ecology Progress Series 428:89-104
[43]
McCulloch M, Montagna P, Frsterra G, Mortimer G, Hussermann V, Mazzoli C. 2005. Uranium-series dating and growth rates of the cool-water coral Desmophyllum dianthus from the Chilean fjords. In: Brock R, George RY, eds. 3rd international symposium on deep sea corals ISDSC 3. Miami, Florida, USA, November 28–December 2. 191
[44]
McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Frsterra G, López Correa M, Maier C, Rüggeberg A, Taviani M. 2012. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochimica Et Cosmochimica Acta 87:21-34
[45]
Miller KJ, Rowden AA, Williams A, Hussermann V. 2011. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS ONE 6:e19004
[46]
Montagna P, McCulloch M, Taviani M, Mazzoli C, Vendrell B. 2006. Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science 312:1788-1791
[47]
Mortensen PB, Buhl-Mortensen L. 2005. Deep-water corals and their habitats in the Gully, a submarine canyon off Atlantic Canada. In: Freiwald A, Roberts JM, eds. Cold-water corals and ecosystems. Berlin: Springer-Verlag. 247-277
[48]
Nemzer BV, Dickson AG. 2005. The stability and reproducibility of Tris buffers in synthetic seawater. Marine Chemistry 96:237-242
[49]
Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Naijar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681-686
[50]
Palma S, Silva N. 2004. Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-Sea Research Part II 51:513-535
[51]
Prado-Fiedler R. 2009. Winter and summer distribution of dissolved oxygen, pH and nutrients at the heads of fjords in Chilean Patagonia with possible phosphorus limitation. Revista de Biología Marina y Oceanografía 44:783-789
[52]
Reveillaud J, Freiwald A, Van Rooij D, Le Guilloux E, Altuna A, Foubert A, Vanreusel A, Olu-Le Roy K, Henriet JP. 2008. The distribution of scleractinian corals in the Bay of Biscay, NE Atlantic. Facies 54:317-331
[53]
Riebesell U. 2008. Acid test for marine biodiversity. Nature 454:46-47
[54]
Riebesell U, Fabry VJ, Hansson L, Gattuso JP. 2010. Guide to best practices for ocean acidification research and data reporting. Luxembourg: Publications Office of the European Union. Available at http://www.epoca-project.eu/index.php/guide-to-best-practices-for-ocean-acidification-research-and-data-reporting.html
[55]
Roberts JM, Wheeler A, Freiwald A, Cairns S. 2009. Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge: Cambridge University Press.
[56]
Roberts JM, Wheeler AJ, Freiwald A. 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543-547
[57]
Robinson LF, Adkins JF, Scheirer DS, Fernandez DP, Gagnon A, Waller RG. 2007. Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years. Bulletin of Marine Science 81:371-391 Available at http://www.ingentaconnect.com/content/umrsmas/bullmar/2007/00000081/00000003/art00007#expand/collapse
[58]
Sánchez N, González HE, Iriarte JL. 2011. Trophic interactions of pelagic crustaceans in Comau Fjord (Chile): their role in the food web structure. Journal of Plankton Research 33:1212-1229
[59]
Silva N. 2008. Dissolved oxygen, pH, and nutrients in the austral Chilean channels and fjords. In: Silva N, Palma S, eds. Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn. Comité Oceanográphico Nacional-Pontificia Universidad Católica de Valparaíso, Chile. 37-43 Available at http://www.cona.cl/revista/english/3.2%20Nelson%20Silva.pdf
[60]
Soto MV. 2009. Geography of the chilean fjord region. In: Hussermann V, Frsterra G, eds. Marine benthic fauna of chilean patagonia. Santiago: Nature In Focus. 43-52
[61]
Squires DF. 1965. Deep-water coral structure on the Campbell Plateau, New Zealand. Deep-Sea Research 12:785-788
[62]
Thiagarajan N, Gerlach D, Roberts ML, Burke A, McNichol A, Jenkins WJ, Subhas AV, Thresher RE, Adkins JF. 2013. Movement of deep-sea coral populations on climatic timescales. Paleoceanography 28:227-236
[63]
Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J. 2011. Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Marine Ecology Progress Series 442:87-99
[64]
Valle-Levinson A, Sarkar N, Sanay R, Soto D, León J. 2007. Spatial structure of hydrography and flow in a Chilean fjord, Estuario Reloncavi. Estuaries and Coasts 30:113-126
[65]
Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S. 2011. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6:e20013