全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PeerJ  2015 

Increasing the precision of orthology-based complex prediction through network alignment

DOI: 10.7717/peerj.413

Keywords: Protein complexes,Complex prediction,Network alignment,Macromolecular assemblies,Protein–protein interactions,Evolutionary conservation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Macromolecular assemblies play an important role in almost all cellular processes. However, despite several large-scale studies, our current knowledge about protein complexes is still quite limited, thus advocating the use of in silico predictions to gather information on complex composition in model organisms. Since protein–protein interactions present certain constraints on the functional divergence of macromolecular assemblies during evolution, it is possible to predict complexes based on orthology data. Here, we show that incorporating interaction information through network alignment significantly increases the precision of orthology-based complex prediction. Moreover, we performed a large-scale in silico screen for protein complexes in human, yeast and fly, through the alignment of hundreds of known complexes to whole organism interactomes. Systematic comparison of the resulting network alignments to all complexes currently known in those species revealed many conserved complexes, as well as several novel complex components. In addition to validating our predictions using orthogonal data, we were able to assign specific functional roles to the predicted complexes. In several cases, the incorporation of interaction data through network alignment allowed to distinguish real complex components from other orthologous proteins. Our analyses indicate that current knowledge of yeast protein complexes exceeds that in other organisms and that predicting complexes in fly based on human and yeast data is complementary rather than redundant. Lastly, assessing the conservation of protein complexes of the human pathogen Mycoplasma pneumoniae, we discovered that its complexes repertoire is different from that of eukaryotes, suggesting new points of therapeutic intervention, whereas targeting the pathogen’s Restriction enzyme complex might lead to adverse effects due to its similarity to ATP-dependent metalloproteases in the human host.

References

[1]  Ali W, Deane CM. 2009. Functionally guided alignment of protein interaction networks for module detection. Bioinformatics 25:3166-3173
[2]  Altschul SF, Madden TL, Schffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389-3402
[3]  Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, Kerssemakers J, Leroy C, Menden M, Michaut M, Montecchi-Palazzi L, Neuhauser SN, Orchard S, Perreau V, Roechert B, van Eijk K, Hermjakob H. 2010. The IntAct molecular interaction database in 2010. Nucleic Acids Research 38:D525-D531
[4]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nature Genetics 25:25-29
[5]  Babu M, Vlasblom J, Pu S, Guo X, Graham C, Bean BDM, Burston HE, Vizeacoumar FJ, Snider J, Phanse S, Fong V, Tam YYC, Davey M, Hnatshak O, Bajaj N, Chandran S, Punna T, Christopolous C, Wong V, Yu A, Zhong G, Li J, Stagljar I, Conibear E, Wodak SJ, Emili A, Greenblatt JF. 2012. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489:585-589
[6]  Bader GD, Hogue CWV. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2
[7]  Brooks MA, Gewartowski K, Mitsiki E, Létoquart J, Pache RA, Billier Y, Bertero M, Corréa M, Czarnocki-Cieciura M, Dadlez M, Henriot V, Lazar N, Delbos L, Lebert D, Piwowarski J, Rochaix P, Bttcher B, Serrano L, Séraphin B, van Tilbeurgh H, Aloy P, Perrakis A, Dziembowski A. 2010. Systematic bioinformatics and experimental validation of yeast complexes reduces the rate of attrition during structural investigations. Structure 18:1075-1082
[8]  Bruckner S, Hüffner F, Karp RM, Shamir R, Sharan R. 2010. Topology-free querying of protein interaction networks. Journal of Computational Biology 17:237-252
[9]  Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G. 2010. MINT, the molecular interaction database: 2009 update. Nucleic Acids Research 38:D532-D539
[10]  Cootes AP, Muggleton SH, Sternberg MJE. 2007. The identification of similarities between biological networks: application to the metabolome and interactome. Journal of Molecular Biology 369:1126-1139
[11]  Dezso Z, Oltvai ZN, Barabási A-L. 2003. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Research 13:2450-2454
[12]  Dost B, Shlomi T, Gupta N, Ruppin E, Bafna V, Sharan R. 2008. QNet: a tool for querying protein interaction networks. Journal of Computational Biology 15:913-925
[13]  Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M-A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A-M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631-636
[14]  Gavin A-C, Bsche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A-M, Cruciat C-M, Remor M, Hfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M-A, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147
[15]  Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. 2007. The human disease network. Proceedings of the National Academy of Sciences of the United States of America 104:8685-8690
[16]  Gomes XV, Burgers PM. 2000. Two modes of FEN1 binding to PCNA regulated by DNA. The EMBO Journal 19:3811-3821
[17]  Gomes XV, Schmidt SL, Burgers PM. 2001. ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. The Journal of Biological Chemistry 276:34776-34783
[18]  Güldener U, Münsterktter M, Oesterheld M, Pagel P, Ruepp A, Mewes H-W, Stümpflen V. 2006. MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Research 34:D436-D441
[19]  Guruharsha KG, Rual J-F, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, VijayRaghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S. 2011. A protein complex network of Drosophila melanogaster. Cell 147:690-703
[20]  Hart GT, Lee I, Marcotte ER. 2007. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8:236
[21]  Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI, Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar V-U-N, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ERM, Paccanaro A, Marcotte EM, Emili A. 2012. A census of human soluble protein complexes. Cell 150:1068-1081
[22]  Hirsh E, Sharan R. 2007. Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 23:e170-176
[23]  Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Srensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180-183
[24]  Hong Z, Yang Y, Zhang C, Niu Y, Li K, Zhao X, Liu J-J. 2009. The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport. Cell Research 19:1334-1349
[25]  Hutchins JRA, Toyoda Y, Hegemann B, Poser I, Hériché J-K, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J, Conrad C, Comartin D, Schleiffer A, Sarov M, Pozniakovsky A, Slabicki MM, Schloissnig S, Steinmacher I, Leuschner M, Ssykor A, Lawo S, Pelletier L, Stark H, Nasmyth K, Ellenberg J, Durbin R, Buchholz F, Mechtler K, Hyman AA, Peters J-M. 2010. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593-599
[26]  Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T. 2003. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences of the United States of America 100:11394-11399
[27]  Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. 2009. Human protein reference database–2009 update. Nucleic Acids Research 37:D767-D772
[28]  Kiemer L, Cesareni G. 2007. Comparative interactomics: comparing apples and pears? Trends Biotechnology 25:448-454
[29]  Koonin EV, Wolf YI, Aravind L. 2001. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Research 11:240-252
[30]  Koyutürk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A. 2006. Pairwise alignment of protein interaction networks. Journal of Computational Biology 13:182-199
[31]  Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-643
[32]  Kühner S, Van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castano-Diez D, Chen W-H, Devos D, Guell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Bttcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin A-C. 2009. Proteome organization in a genome-reduced bacterium. Science 326:1235-1240
[33]  Mayer ML, Gygi SP, Aebersold R, Hieter P. 2001. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Molecular Cell 7:959-970
[34]  Mosca R, Pache RA, Aloy P. 2012. The role of structural disorder in the rewiring of protein interactions through evolution. Molecular & Cellular Proteomics 11:1-8
[35]  Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K. 2001. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Molecular and Cellular Biology 21:5838-5845
[36]  Narayanan M, Karp RM. 2007. Comparing protein interaction networks via a graph match-and-split algorithm. Journal of Computational Biology 14:892-907
[37]  Nomura H, Athauda SBP, Wada H, Maruyama Y, Takahashi K, Inoue H. 2006. Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode. Journal of Biochemistry 139:967-979
[38]  Pache RA, Aloy P. 2008. Incorporating high-throughput proteomics experiments into structural biology pipelines: identification of the low-hanging fruits. Proteomics 8:1959-1964
[39]  Pache RA, Aloy P. 2012. A novel framework for the comparative analysis of biological networks. PLoS ONE 7:e31220
[40]  Pache RA, Babu MM, Aloy P. 2009. Exploiting gene deletion fitness effects in yeast to understand the modular architecture of protein complexes under different growth conditions. BMC Systems Biology 3:74
[41]  Pache RA, Céol A, Aloy P. 2012. NetAligner–a network alignment server to compare complexes, pathways and whole interactomes. Nucleic Acids Research 40(W1):W157-W161
[42]  Pereira-Leal JB, Enright AJ, Ouzounis CA. 2004. Detection of functional modules from protein interaction networks. Proteins 54:49-57
[43]  Pomerantz RT, O’Donnell M. 2007. Replisome mechanics: insights into a twin DNA polymerase machine. Trends in Microbiology 15:156-164
[44]  Poyatos JF, Hurst LD. 2004. How biologically relevant are interaction-based modules in protein networks? Genome Biology 5:R93
[45]  Pu S, Vlasblom J, Emili A, Greenblatt J, Wodak SJ. 2007. Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 7:944-960
[46]  Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park H-O, Hayles J, Hoe K-L, Kim D-U, Ideker T, Grewal SI, Weissman JS, Krogan NJ. 2008. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322:405-410
[47]  Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes H-W. 2010. CORUM: the comprehensive resource of mammalian protein complexes–2009. Nucleic Acids Research 38:D497-D501
[48]  Schmidt SL, Gomes XV, Burgers PM. 2001. ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading. The Journal of Biological Chemistry 276:34784-34791
[49]  Sharan R, Ideker T. 2006. Modeling cellular machinery through biological network comparison. Nature Biotechnology 24:427-433
[50]  Sharan R, Ideker T, Kelley B, Shamir R, Karp RM. 2005. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. Journal of Computational Biology 12:835-846
[51]  Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431-432
[52]  Spirin V, Mirny LA. 2003. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America 100:12123-12128
[53]  Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, Kane MF, Kolodner RD. 1997. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proceedings of the National Academy of Sciences of the United States of America 94:7487-7492
[54]  UniProt-Consortium. 2009. The Universal Protein Resource (UniProt) Nucleic Acids Research 37:D169-D174
[55]  van Dam TJP, Snel B. 2008. Protein complex evolution does not involve extensive network rewiring. PLoS Computational Biology 4:e1000132
[56]  Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási A-L, Vidal M. 2009. An empirical framework for binary interactome mapping. Nature Methods 6:83-90
[57]  Wang H, Kakaradov B, Collins SR, Karotki L, Fiedler D, Shales M, Shokat KM, Walther TC, Krogan NJ, Koller D. 2009. A complex-based reconstruction of the Saccharomyces cerevisiae interactome. Molecular & Cellular Proteomics 8:1361-1381
[58]  Wang TF, Kleckner N, Hunter N. 1999. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proceedings of the National Academy of Sciences of the United States of America 96:13914-13919
[59]  Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ. 2007. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. Journal of Cell Science 120:45-54

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133