Neuraxial anesthesia is a term that denotes all forms of central blocks, involving the spinal, epidural, and caudal spaces. Epidural anesthesia is a versatile technique widely used in anesthetic practice. Its potential to decrease postoperative morbidity and mortality has been demonstrated by numerous studies. To maximize its perioperative benefits while minimizing potential adverse outcomes, the knowledge of factors affecting successful block placement is essential. This paper will provide an overview of the pertinent anatomical, pharmacological, immunological, and technical aspects of epidural anesthesia in both adult and pediatric populations and will discuss the recent advances, the related rare but potentially devastating complications, and the current recommendations for the use of anticoagulants in the setting of neuraxial block placement. 1. Introduction Neuraxial anesthesia is the term for central blocks involving the spinal, epidural, and caudal spaces. While it is now an invaluable adjunct and even occasionally an alternative to general anesthesia, its use is not a new phenomenon. Physicians such as Corning published studies documenting success with neuraxial blocks as early as 1885 [1]. Even more ambitious physician-scientists such as Bier became knowledgeable about spinal anesthesia, in particular, through self-investigation [2]. It unfortunately was also through this type of dedication that he became all too familiar with postdural puncture headaches. Despite its early use, though, much of the gains we have with neuraxial blocks did not occur until the early 1900’s. Limitations in this particular area of anesthesia were limited to lack of drug diversity and a lack of adequate equipment. Prior to 1904, the only drug available for neuraxial use was cocaine, and development of epidural technology was still a ways off. With a larger drug base and equipment advancements came an expansion of the role of neuraxial anesthesia in anesthesia practice. Excluding the obvious fact that surgical conditions primarily dictate the type of anesthesia performed, most operations below the neck can be performed under neuraxial anesthesia. Various studies have shown a decrease in postoperative morbidity and even mortality when used either with general anesthesia or alone. Neuraxial blocks have even been shown to reduce the incidence of venous thrombosis and pulmonary embolism while also minimizing transfusion requirements and respiratory compromise following thoracic and upper abdominal surgery. A decreased stress response has also been noted which may have
References
[1]
J. Corning, “Spinal anesthesia and local medications of the cord,” New York Journal of Medicine, vol. 42, pp. 483–485, 1885.
[2]
D. Brown, “Spinal, epidural, and caudal anesthesia,” in Miller’s Anesthesia, R. D. Miller, Ed., pp. 1653–1683, Elsevier, Philadelphia, Pa, USA, 6th edition, 2005.
[3]
Q. H. Hogan, “Lumbar epidural anatomy. A new look by cryomicrotome section,” Anesthesiology, vol. 75, no. 5, pp. 767–775, 1991.
[4]
Q. Hogan, “Distribution of solution in the epidural space: examination by cryomicrotome section,” Regional Anesthesia and Pain Medicine, vol. 27, no. 2, pp. 150–156, 2002.
[5]
B Deschner, M. Allen, and O. de Leon, “Epidural blockade,” in Textbook of Regional Anesthesia and Acute Pain Management, A. Hadzic, Ed., pp. 237–269, McGraw–Hill, New York, NY, USA, 1st edition, 2006.
[6]
J. H. McClure, “Ropivacaine,” British Journal of Anaesthesia, vol. 76, no. 2, pp. 300–307, 1996.
[7]
I. Harukuni, H. Yamaguchi, S. Sato, and H. Naito, “The comparison of epidural fentanyl, epidural lidocaine, and intravenous fentanyl in patients undergoing gastrectomy,” Anesthesia and Analgesia, vol. 81, no. 6, pp. 1169–1174, 1995.
[8]
A. Tamsen and T. Gordh, “Epidural clonidine produces analgesia,” The Lancet, vol. 2, no. 8396, pp. 231–232, 1984.
[9]
M. De Kock, B. Crochet, C. Morimont, and J. L. Scholtes, “Intravenous or epidural clonidine for intra- and postoperative analgesia,” Anesthesiology, vol. 79, no. 3, pp. 525–531, 1993.
[10]
M. De Kock, “Site of hemodynamic effects of alpha sub 2 -adrenergic agonists,” Anesthesiology, vol. 75, pp. 715–716, 1991.
[11]
B. Biki, E. Mascha, D. C. Moriarty, J. M. Fitzpatrick, D. I. Sessler, and D. J. Buggy, “Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis,” Anesthesiology, vol. 109, no. 2, pp. 180–187, 2008.
[12]
J. P. Desborough, “The stress response to trauma and surgery,” British Journal of Anaesthesia, vol. 85, no. 1, pp. 109–117, 2000.
[13]
S. Ben-Eliyahu, G. G. Page, R. Yirmiya, and G. Shakhar, “Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity,” International Journal of Cancer, vol. 80, no. 6, pp. 880–888, 1999.
[14]
S. C. O'Riain, D. J. Buggy, M. J. Kerin, R. W. G. Watson, and D. C. Moriarty, “Inhibition of the stress response to breast cancer surgery by regional anesthesia and analgesia does not affect vascular endothelial growth factor and prostaglandin E2,” Anesthesia and Analgesia, vol. 100, no. 1, pp. 244–249, 2005.
[15]
H. Kehlet, “Modification of responses to surgery by neural blockade: clinical implications,” in Neural Blockade in Clinical Anesthesia and Management of Pain, M. Cousins and P. Bridenbaugh, Eds., pp. 129–178, J. B. Lippincott, Philadelphia, Pa, USA, 1998.
[16]
H. Kehlet, “Surgical stress: the role of pain and analgesia,” British Journal of Anaesthesia, vol. 63, no. 2, pp. 189–195, 1989.
[17]
H. O. Besedovsky, A. E. Del Rey, and E. Sorkin, “Immune-neuroendocrine interactions,” Journal of Immunology, vol. 135, no. 2, pp. 750–754, 1985.
[18]
D. I. Sessler, “Long-term consequences of anesthetic management,” Anesthesiology, vol. 111, no. 1, pp. 1–4, 2009.
[19]
S. Ben-Eliyahu, G. Shakhar, G. G. Page, V. Stefanski, and K. Shakhar, “Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and β-adrenoceptors,” NeuroImmunoModulation, vol. 8, no. 3, pp. 154–164, 2000.
[20]
K. Buttenschoen, K. Fathimani, and D. C. Buttenschoen, “Effect of major abdominal surgery on the host immune response to infection,” Current Opinion in Infectious Diseases, vol. 23, no. 3, pp. 259–267, 2010.
[21]
D. J. Buggy and G. Smith, “Epidural anaesthesia and analgesia: better outcome after major surgery?” British Medical Journal, vol. 319, no. 7209, pp. 530–531, 1999.
[22]
M. S. O'Reilly, T. Boehm, Y. Shing et al., “Endostatin: an endogenous inhibitor of angiogenesis and tumor growth,” Cell, vol. 88, no. 2, pp. 277–285, 1997.
[23]
M. S. O'Reilly, L. Holmgren, Y. Shing et al., “Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma,” Cell, vol. 79, no. 2, pp. 315–328, 1994.
[24]
M. Yokoyama, Y. Itano, S. Mizobuchi et al., “The effects of epidural block on the distribution of lymphocyte subsets and natural-killer cell activity in patients with and without pain,” Anesthesia and Analgesia, vol. 92, no. 2, pp. 463–469, 2001.
[25]
S. A. Kirkley, “Proposed mechanisms of transfusion-induced immunomodulation,” Clinical and Diagnostic Laboratory Immunology, vol. 6, no. 5, pp. 652–657, 1999.
[26]
L. Reynolds, J. Beckmann, and A. Kurz, “Perioperative complications of hypothermia,” Best Practice and Research, vol. 22, no. 4, pp. 645–657, 2008.
[27]
M. Turina, D. E. Fry, and H. C. Polk, “Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects,” Critical Care Medicine, vol. 33, no. 7, pp. 1624–1633, 2005.
[28]
G. Delogu, S. Moretti, G. Famularo et al., “Mitochondrial perturbations and oxidant stress in lymphocytes from patients undergoing surgery and general anesthesia,” Archives of Surgery, vol. 136, no. 10, pp. 1190–1196, 2001.
[29]
G. P. Chrousos, F. Epstein, J. Flier, S. Reichlin, and S. Pavlou, “The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation,” New England Journal of Medicine, vol. 332, no. 20, pp. 1351–1362, 1995.
[30]
A. J. Rassias, A. L. Givan, C. A. S. Marrin, K. Whalen, J. Pahl, and M. P. Yeager, “Insulin increases neutrophil count and phagocytic capacity after cardiac surgery,” Anesthesia and Analgesia, vol. 94, no. 5, pp. 1113–1119, 2002.
[31]
C. P. Nielson and D. A. Hindson, “Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro,” Diabetes, vol. 38, no. 8, pp. 1031–1035, 1989.
[32]
A. J. Rassias, C. A. S. Marrin, J. Arruda, P. K. Whalen, M. Beach, and M. P. Yeager, “Insulin infusion improves neutrophil function in diabetic cardiac surgery patients,” Anesthesia and Analgesia, vol. 88, no. 5, pp. 1011–1016, 1999.
[33]
I. Beck, J. S. Scott, M. Pepper, and E. H. Speck, “The effect of neonatal exchange and later blood transfusion on lymphocyte cultures,” American Journal of Reproductive Immunology, vol. 1, no. 5, pp. 224–225, 1981.
[34]
P. I. Tartter, B. Steinberg, D. M. Barron, and G. Martinelli, “Transfusion history, T cell subsets and natural killer cytotoxicity in patients with colorectal cancer,” Vox Sanguinis, vol. 56, no. 2, pp. 80–84, 1989.
[35]
K. Yuki, N. S. Astrof, C. Bracken, G. S. Sulpicio, and M. Shimaoka, “Sevoflurane binds and allosterically blocks integrin lymphocyte function-associated antigen-1,” Anesthesiology, vol. 113, no. 3, pp. 600–609, 2010.
[36]
P. Sacerdote, M. Bianchi, L. Gaspani et al., “The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients,” Anesthesia and Analgesia, vol. 90, no. 6, pp. 1411–1414, 2000.
[37]
R. Melamed, S. Bar-Yosef, G. Shakhar, K. Shakhar, and S. Ben-Eliyahu, “Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures,” Anesthesia and Analgesia, vol. 97, no. 5, pp. 1331–1339, 2003.
[38]
J. M. Risdahl, K. V. Khanna, P. K. Peterson, and T. W. Molitor, “Opiates and infection,” Journal of Neuroimmunology, vol. 83, no. 1-2, pp. 4–18, 1998.
[39]
S. Roy and H. H. Loh, “Effects of opioids on the immune system,” Neurochemical Research, vol. 21, no. 11, pp. 1375–1386, 1996.
[40]
T. Hori, T. Katafuchi, S. Take, Y. Kaizuka, T. Ichijo, and N. Shimizu, “The hypothalamo-sympathetic nervous system modulates peripheral cellular immunity,” Neurobiology, vol. 3, no. 3-4, pp. 309–317, 1995.
[41]
M. H. Makman, “Morphine receptors in immunocytes and neurons,” Advances in Neuroimmunology, vol. 4, no. 2, pp. 69–82, 1994.
[42]
E. J. De Waal, J. W. Van Der Laan, and H. Van Loveren, “Effects of prolonged exposure to morphine and methadone on in vivo parameters of immune function in rats,” Toxicology, vol. 129, no. 2-3, pp. 201–210, 1998.
[43]
K. Jaeger, D. Scheinichen, J. Heine et al., “Remifentanil, fentanyl, and alfentanil have no influence on the respiratory burst of human neutrophils in vitro,” Acta Anaesthesiologica Scandinavica, vol. 42, no. 9, pp. 1110–1113, 1998.
[44]
B. Larsen, G. Hoff, W. Wilhelm, H. Buchinger, G. A. Wanner, and M. Bauer, “Effect of intravenous anesthetics on spontaneous and endotoxin- stimulated cytokine response in cultured human whole blood,” Anesthesiology, vol. 89, no. 5, pp. 1218–1227, 1998.
[45]
P. Buinauskas, G. McDonald, and W. Cole, “Role of operative stress on the resistance of the experimental animal to inoculated cancer cells,” Annals of Surgery, vol. 148, pp. 642–648, 1958.
[46]
M. G. Denis, C. Lipart, J. Leborgne et al., “Detection of disseminated tumor cells in peripheral blood of colorectal cancer patients,” International Journal of Cancer, vol. 74, no. 5, pp. 540–544, 1997.
[47]
G. Shakhar and S. Ben-Eliyahu, “Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients?” Annals of Surgical Oncology, vol. 10, no. 8, pp. 972–992, 2003.
[48]
W. A. Koltun, M. M. Bloomer, A. F. Tilberg et al., “Awake epidural anesthesia is associated with improved natural killer cell cytotoxicity and a reduced stress response,” American Journal of Surgery, vol. 171, no. 1, pp. 68–72, 1996.
[49]
T. Nagaro, T. Yorozuya, M. Kamei, N. Kii, T. Arai, and S. Abe, “Fluoroscopically guided epidural block in the thoracic and lumbar regions,” Regional Anesthesia and Pain Medicine, vol. 31, no. 5, pp. 409–416, 2006.
[50]
P. Marhofer, M. Greher, and S. Kapral, “Ultrasound guidance in regional anaesthesia,” British Journal of Anaesthesia, vol. 94, no. 1, pp. 7–17, 2005.
[51]
P. H. Pan, T. D. Bogard, and M. D. Owen, “Incidence and characteristics of failures in obstetric neuraxial analgesia and anesthesia: a retrospective analysis of 19,259 deliveries,” International Journal of Obstetric Anesthesia, vol. 13, no. 4, pp. 227–233, 2004.
[52]
P. Lirk, H. Messner, M. Deibl et al., “Accuracy in estimating the correct intervertebral space level during lumbar, thoracic and cervical epidural anaesthesia,” Acta Anaesthesiologica Scandinavica, vol. 48, no. 3, pp. 347–349, 2004.
[53]
H. Willschke, P. Marhofer, A. Bosenberg et al., “Epidural catheter placement in children: comparing a novel approach using ultrasound guidance and a standard loss-of-resistance technique,” British Journal of Anaesthesia, vol. 97, no. 2, pp. 200–207, 2006.
[54]
A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine, vol. 5, no. 1, pp. 78–86, 1980.
[55]
A. H. White, “Injection techniques for the diagnosis and treatment of low back pain,” Orthopedic Clinics of North America, vol. 14, no. 3, pp. 553–567, 1983.
[56]
C. P. C. Chen, S. F. T. Tang, T. C. Hsu et al., “Ultrasound guidance in caudal epidural needle placement,” Anesthesiology, vol. 101, no. 1, pp. 181–184, 2004.
[57]
T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Ultrasound imaging facilitates localization of the epidural space during combined spinal and epidural anesthesia,” Regional Anesthesia and Pain Medicine, vol. 26, no. 1, pp. 64–67, 2001.
[58]
T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” Journal of Clinical Anesthesia, vol. 14, no. 3, pp. 169–175, 2002.
[59]
B. A. Johnson, K. P. Schellhas, and S. R. Pollei, “Epidurography and therapeutic epidural injections: technical considerations and experience with 5334 cases,” American Journal of Neuroradiology, vol. 20, no. 4, pp. 697–705, 1999.
[60]
R. C. Cork, J. J. Kryc, and R. W. Vaughan, “Ultrasonic localization of the lumbar epidural space,” Anesthesiology, vol. 52, no. 6, pp. 513–516, 1980.
[61]
J. M. Currie, “Measurement of the depth to the extradural space using ultrasound,” British Journal of Anaesthesia, vol. 56, no. 4, pp. 345–347, 1984.
[62]
M. Bonazzi and L. B. de Gracia, “Individuazione ecoguidata dello spazio epidurale lombare,” Minerva Anesthesiol, vol. 61, pp. 201–205, 1995.
[63]
D. H. Wallace, J. M. Currie, L. C. Gilstrap, and R. Santos, “Indirect sonographic guidance for epidural anesthesia in obese pregnant patients,” Regional Anesthesia, vol. 17, no. 4, pp. 233–236, 1992.
[64]
H.-J. Rapp, A. Folger, and T. Grau, “Ultrasound-guided epidural catheter insertion in children,” Anesthesia and Analgesia, vol. 101, no. 2, pp. 333–339, 2005.
[65]
D. Belavy, M. J. Ruitenberg, and R. B. Brijball, “Feasibility study of real-time three-/four-dimensional ultrasound for epidural catheter insertion,” British Journal of Anaesthesia, vol. 107, no. 3, pp. 438–445, 2011.
[66]
M. K. Karmakar, X. Li, A. M.-H. Ho, W. H. Kwok, and P. T. Chui, “Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique,” British Journal of Anaesthesia, vol. 102, no. 6, pp. 845–854, 2009.
[67]
H. Yamagami, Y. Yuda, M. Shiotani, K. Ooseto, Y. Naganuma, and H. Karasawa, “The administration of continuous epidural block under proneposition with fluoroscopic guidance,” Japanese Journal of Anesthesiology, vol. 38, no. 2, pp. 229–235, 1989.
[68]
B. Fredman, M. B. Nun, E. Zohar et al., “Epidural steroids for treating “failed back surgery syndrome”: is fluoroscopy really necessary?” Anesthesia and Analgesia, vol. 88, no. 2, pp. 367–372, 1999.
[69]
D. L. Renfrew, T. E. Moore, M. H. Kathol, G. Y. El-Khoury, J. H. Lemke, and C. W. Walker, “Correct placement of epidural steroid injections: fluoroscopic guidance and contrast administration,” American Journal of Neuroradiology, vol. 12, no. 5, pp. 1003–1007, 1991.
[70]
O. J. Arthurs, M. Murray, M. Zubier, J. Tooley, and W. Kelsall, “Ultrasonographic determination of neonatal spinal canal depth,” Archives of Disease in Childhood, vol. 93, no. 6, pp. f451–f454, 2008.
[71]
J. G. McCormack and S. Malherbe, “Applications of ultrasound in paediatric anaesthesia,” Current Anaesthesia and Critical Care, vol. 19, no. 5-6, pp. 302–308, 2008.
[72]
B. C. H. Tsui, P. Tarkkila, S. Gupta, and R. Kearney, “Confirmation of caudal needle placement using nerve stimulation,” Anesthesiology, vol. 91, no. 2, pp. 374–378, 1999.
[73]
W. Fujinaka, N. Hinomoto, S. Saeki, A. Yoshida, and S. Uemura, “Decreased risk of catheter infection in infants and children using subcutaneous tunneling for continuous caudal anesthesia,” Acta Medica Okayama, vol. 55, no. 5, pp. 283–287, 2001.
[74]
V. Moen, N. Dahlgren, and L. Irestedt, “Severe neurological complications after central neuraxial blockades in Sweden 1990–1999,” Anesthesiology, vol. 101, no. 4, pp. 950–959, 2004.
[75]
N. Dahlgren and K. Tornebrandt, “Neurological complications after anaesthesia. A follow-up of 18,000 spinal and epidural anaesthetics performed over three years,” Acta Anaesthesiologica Scandinavica, vol. 39, no. 7, pp. 872–880, 1995.
[76]
U. Aromaa, M. Lahdensuu, and D. A. Cozanitis, “Severe complications associated with epidural and spinal anaesthesias in Finland 1987–1993. A study based on patient insurance claims,” Acta Anaesthesiologica Scandinavica, vol. 41, no. 4, pp. 445–452, 1997.
[77]
T. M. Cook, D. Counsell, and J. A. W. Wildsmith, “Major complications of central neuraxial block: report on the Third National Audit Project of the Royal College of Anaesthetists,” British Journal of Anaesthesia, vol. 102, no. 2, pp. 179–190, 2009.
[78]
I. W. Christie and S. McCabe, “Major complications of epidural analgesia after surgery: results of a six-year survey,” Anaesthesia, vol. 62, no. 4, pp. 335–341, 2007.
[79]
A. A. N. M. Royakkers, H. Willigers, A. J. Van der Ven, J. Wilmink, M. Durieux, and M. Van Kleef, “Catheter-related epidural abscesses—Don't wait for neurological deficits,” Acta Anaesthesiologica Scandinavica, vol. 46, no. 5, pp. 611–615, 2002.
[80]
Y. Auroy, P. Narchi, A. Messiah, L. Litt, B. Rouvier, and K. Samii, “Serious complications related to regional anesthesia: results of a prospective survey in France,” Anesthesiology, vol. 87, no. 3, pp. 479–486, 1997.
[81]
T. T. Horlocker, M. D. Abel, J. M. Messick, and D. R. Schroeder, “Small risk of serious neurologic complications related to lumbar epidural catheter placement in anesthetized patients,” Anesthesia and Analgesia, vol. 96, no. 6, pp. 1547–1552, 2003.
[82]
W. Ruppen, S. Derry, H. McQuay, and R. A. Moore, “Incidence of epidural hematoma, infection, and neurologic injury in obstetric patients with epidural analgesia/anesthesia,” Anesthesiology, vol. 105, no. 2, pp. 394–399, 2006.
[83]
C. L. Wu, R. W. Hurley, G. F. Anderson, R. Herbert, A. J. Rowlingson, and L. A. Fleisher, “Effect of postoperative epidural analgesia on morbidity and mortality following surgery in medicare patients,” Regional Anesthesia and Pain Medicine, vol. 29, no. 6, pp. 525–533, 2004.
[84]
A. Tyagi and A. Bhattacharya, “Central neuraxial blocks and anticoagulation: a review of current trends,” European Journal of Anaesthesiology, vol. 19, no. 5, pp. 317–329, 2002.
[85]
D. R. Schroeder, “Statistics: detecting a rare adverse drug reaction using spontaneous reports,” Regional Anesthesia and Pain Medicine, vol. 23, no. 6, pp. 183–189, 1998.
[86]
L. A. Lee, K. L. Posner, K. B. Domino, R. A. Caplan, and F. W. Cheney, “Injuries associated with regional anesthesia in the 1980s and 1990s: a closed claims analysis,” Anesthesiology, vol. 101, no. 1, pp. 143–152, 2004.
[87]
C. M. Gleeson and F. Reynolds, “Accidental dural puncture rates in UK obstetric practice,” International Journal of Obstetric Anesthesia, vol. 7, no. 4, pp. 242–246, 1998.
[88]
B. Darvish, A. Gupta, S. Alahuhta et al., “Management of accidental dural puncture and post-dural puncture headache after labour: a Nordic survey,” Acta Anaesthesiologica Scandinavica, vol. 55, no. 1, pp. 46–53, 2011.
[89]
M. Van de Velde, R. Schepers, N. Berends, E. Vandermeersch, and F. De Buck, “Ten years of experience with accidental dural puncture and post-dural puncture headache in a tertiary obstetric anaesthesia department,” International Journal of Obstetric Anesthesia, vol. 17, no. 4, pp. 329–335, 2008.
[90]
C. C. Apfel, A. Saxena, O. S. Cakmakkaya, R. Gaiser, E. George, and O. Radke, “Prevention of postdural puncture headache after accidental dural puncture: a quantitative systematic review,” British Journal of Anaesthesia, vol. 105, no. 3, pp. 255–263, 2010.
[91]
K. Hara and T. Sata, “Unintentional total spinal anesthesia during cervical epidural block with ropivacaine,” Japanese Journal of Anesthesiology, vol. 55, no. 9, pp. 1168–1169, 2006.
[92]
J. G. Jenkins, “Some immediate serious complications of obstetric epidural analgesia and anaesthesia: a prospective study of 145 550 epidurals,” International Journal of Obstetric Anesthesia, vol. 14, no. 1, pp. 37–42, 2005.
[93]
D. Agarwal, M. Mohta, A. Tyagi, and A. K. Sethi, “Subdural block and the anaesthetist,” Anaesthesia and Intensive Care, vol. 38, no. 1, pp. 20–25, 2010.
[94]
S. M. Hussenbocus, M. J. Wilby, C. Cain, and D. Hall, “Spontaneous spinal epidural hematoma: a case report and literature review,” Journal of Emergency Medicine. In press.
[95]
T. T. Horlocker, “What's a nice patient like you doing with a complication like this? Diagnosis, prognosis and prevention of spinal hematoma,” Canadian Journal of Anesthesia, vol. 51, no. 6, pp. 527–534, 2004.
[96]
H. Wulf, “Epidural anaesthesia and spinal haematoma,” Canadian Journal of Anaesthesia, vol. 43, no. 12, pp. 1260–1271, 1996.
[97]
H. Renck, “Neurological complications of central nerve blocks,” Acta Anaesthesiologica Scandinavica, vol. 39, no. 7, pp. 859–868, 1995.
[98]
E. Vandermeulen, H. van Aken, and J. Vermylen, “Anticoagulants and spinal-epidural anaesthesia,” Anesthesia & Analgesia, vol. 79, pp. 1165–1177, 1994.
[99]
T. T. Horlocker, D. J. Wedel, J. C. Rowlingson et al., “Regional Anesthesia in the patient receiving antithrombotic or thrombolytic therapy; American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (Third Edition),” Regional Anesthesia and Pain Medicine, vol. 35, no. 1, pp. 64–101, 2010.
[100]
F. W. Cheney, K. B. Domino, R. A. Caplan, and K. L. Posner, “Nerve injury associated with anesthesia: a closed claims analysis,” Anesthesiology, vol. 90, no. 4, pp. 1062–1069, 1999.
[101]
N. F. Sethna, D. Clendenin, U. Athiraman, J. Solodiuk, D. P. Rodriguez, and D. Zurakowski, “Incidence of epidural catheter-associated infections after continuous epidural analgesia in children,” Anesthesiology, vol. 113, no. 1, pp. 224–232, 2010.
[102]
C. Raedler, C. Lass-Fl?rl, F. Pühringer, C. Kolbitsch, W. Lingnau, and A. Benzer, “Bacterial contamination of needles used for spinal and epidural anaesthesia,” British Journal of Anaesthesia, vol. 83, no. 4, pp. 657–658, 1999.
[103]
L. P. Wang, J. Hauerberg, and J. F. Schmidt, “Incidence of spinal epidural abscess after epidural analgesia: a national 1-year survey,” Anesthesiology, vol. 91, no. 6, pp. 1928–1936, 1999.
[104]
A. S. Baker, R. G. Ojemann, M. N. Swartz, and E. P. Richardson, “Spinal epidural abscess,” New England Journal of Medicine, vol. 293, no. 10, pp. 463–468, 1975.
[105]
W. D. Ngan Kee, M. R. Jones, P. Thomas, and R. J. Worth, “Extradural abscess complicating extradural anaesthesia for Caesarean section,” British Journal of Anaesthesia, vol. 69, no. 6, pp. 647–652, 1992.
[106]
S. Grewal, G. Hocking, and J. A. W. Wildsmith, “Epidural abscesses,” British Journal of Anaesthesia, vol. 96, no. 3, pp. 292–302, 2006.
[107]
I. Haraga, S. Shono, S. Abe, and K. Higa, “Aseptic precautions in epidural catheterization for surgery,” Japanese Journal of Anesthesiology, vol. 59, no. 5, pp. 585–588, 2010.
[108]
D. B. Scott and B. M. Hibbard, “Serious non-fatal complications associated with extradural block in obstetric practice,” British Journal of Anaesthesia, vol. 64, no. 5, pp. 537–541, 1990.
[109]
H. B. Yuan, Z. Zuo, K. W. Yu, W. M. Lin, H. C. Lee, and K. H. Chan, “Bacterial colonization of epidural catheters used for short-term postoperative analgesia: microbiological examination and risk factor analysis,” Anesthesiology, vol. 108, no. 1, pp. 130–137, 2008.
[110]
K. Drasner, M. L. Rigler, D. I. Sessler, and M. L. Stoller, “Cauda equina syndrome following intended epidural anesthesia,” Anesthesiology, vol. 77, no. 3, pp. 582–585, 1992.
[111]
A. Sghirlanzoni, R. Marazzi, D. Pareyson, A. Olivieri, and M. Bracchi, “Epidural anaesthesia and spinal arachnoiditis,” Anaesthesia, vol. 44, no. 4, pp. 317–321, 1989.
[112]
J. A. Aldrete, “Neurologic deficits and arachnoiditis following neuroaxial anesthesia,” Acta Anaesthesiologica Scandinavica, vol. 47, no. 1, pp. 3–12, 2003.
[113]
I. Rice, M. Y. K. Wee, and K. Thomson, “Obstetric epidurals and chronic adhesive arachnoiditis,” British Journal of Anaesthesia, vol. 92, no. 1, pp. 109–120, 2004.
[114]
D. M. Long, “Chronic adhesive spinal arachnoiditis: pathogenesis, prognosis, and treatment,” Neurosurgery Quarterly, vol. 2, no. 4, pp. 296–319, 1992.
[115]
D. K. Wysowski, L. Talarico, J. Bacsanyi, P. Botstein, P. Chaikin, and J. Lim, “Spinal and epidural hematoma and low-molecular-weight heparin,” New England Journal of Medicine, vol. 338, no. 24, pp. 1774–1775, 1998.
[116]
W. H. Geerts, D. Bergqvist, G. F. Pineo et al., “Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition),” Chest, vol. 133, no. 6, pp. 381S–453S, 2008.
[117]
M. Stafford-Smith, “Impaired haemostasis and regional anaesthesia,” Canadian Journal of Anaesthesia, vol. 43, no. 5, pp. R129–R141, 1996.
[118]
E. Vandermeulen, F. Singelyn, M. Vercauteren, J. F. Brichant, B. E. Ickx, and P. Gautier, “Belgian guidelines concerning central neural blockade in patients with drug-induced alteration of coagulation: an update,” Acta Anaesthesiologica Belgica, vol. 56, no. 2, pp. 139–146, 2005.
[119]
W. Gogarten, E. Vandermeulen, H. Van Aken, S. Kozek, J. V. Llau, and C. M. Samama, “Regional anaesthesia and antithrombotic agents: Recommendations of the European Society of Anaesthesiology,” European Journal of Anaesthesiology, vol. 27, no. 12, pp. 999–1015, 2010.
[120]
T. E. Warkentin, M. N. Levine, J. Hirsh et al., “Heparin-induced thrombocytopenia in patients treated with low-molecular- weight heparin or unfractionated heparin,” New England Journal of Medicine, vol. 332, no. 20, pp. 1330–1335, 1995.