全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prediction of Neutron Yield of IR-IECF Facility in High Voltages Using Artificial Neural Network

DOI: 10.1155/2014/798160

Full-Text   Cite this paper   Add to My Lib

Abstract:

Artificial neural network (ANN) is applied to predict the number of produced neutrons from IR-IECF device in wide discharge current and voltage ranges. Experimentally, discharge current from 20 to 100?mA had been tuned by deuterium gas pressure and cathode voltage had been changed from ?20 to ?82?kV (maximum voltage of the used supply). The maximum neutron production rate (NPR) of 1.46 × 107?n/s had occurred when the voltage was ?82?kV and the discharge current was 48?mA. The back-propagation algorithm is used for training of the proposed multilayer perceptron (MLP) neural network structure. The obtained results show that the proposed ANN model has achieved good agreement with the experimental data. Results show that NPR of 1.855 × 108?n/s can be achieved in voltage and current of 125?kV and 45?mA, respectively. This prediction shows 52% increment in maximum voltage of power supply. Also, the optimum discharge current can increase 1270% NPR. 1. Introduction Inertial electrostatic confinement fusion (IECF) device is a compact and simple structure for nuclear fusion researches by electrical discharge, which can operate in the pulsed or continuous mode. It consists of two concentric (or coaxial) electrodes in which usually the central one (cathode) is negatively high-voltage-biased and the outward electrode (anode) is grounded. In this configuration, strong electric fields between electrodes lead to iodinating the filling gas and then accelerate the created ions toward the center, where the electrons are placed in the opposite direction. As a result, rather hot and dense plasma is formed in the center of cathode. In this situation, the continuous nuclear fusion reactions occur, which are the results of the beam-target and beam-beam interactions depending on the working conditions, although the beam-beam interactions will be negligible compared to beam-target reactions in the plasma conditions in this study. Therefore IECF is considered as a source of hot and dense plasma, highly energetic ions, and fast neutrons (when using deuterium or mixture of deuterium-tritium gas). IECF device is an excellent apparatus because of its ability to generate fast neutrons with high-flux from a small source for many applications, such as medicine (e.g., boron neutron capture cancer therapy) [1–3], radiography or tomography of thick materials, space propulsion system [4], inspection system and explosive landmine detection [5], neutron activation analysis, mine and petroleum exploration, and security screening. Therefore neutron production rate optimization in this device

References

[1]  G. L. Kulcinski, “Non-electric applications of fusion energy—an important precursor to commercial electric power,” Fusion Technology, vol. 34, no. 3, pp. 477–483, 1998.
[2]  R. P. Ashley and the UW IEC Team, “Experimental progress in 2003 of the UW IEC facility,” in Proceedings of the 6th U.S.-Japan IEC Workshop, Tokyo, Japan, October 2003.
[3]  R. P. Ashley, G. L. Kulcinski, J. F. Santarius, S. K. Murali, G. Piefer, and R. Radel, “Steady-state D3He proton production in an IEC fusion device,” Fusion Technology, vol. 39, no. 2, pp. 546–551, 2001.
[4]  C. C. Dobson and I. Hrbud, “Electron density and two-channel neutron emission measurements in steady-state spherical inertial-electrostatically confined plasmas, with review of the one-dimensional kinetic model,” Journal of Applied Physics, vol. 96, no. 1, pp. 94–108, 2004.
[5]  K. Yoshikawa, K. Masuda, T. Takamatsu, et al., “Research and development on a compact discharge-driven D-D fusion neutron source for explosive detection,” in Proceedings of the 2nd Joint International Conference on Sustainable Energy and Environment (SEE '06), Bangkok, Thailand, November 2006.
[6]  T. Takamatsu, K. Masuda, T. Kyunai, H. Toku, and K. Yoshikawa, “Inertial electrostatic confinement fusion device with an ion source using a magnetron discharge,” Nuclear Fusion, vol. 46, no. 1, pp. 142–148, 2006.
[7]  V. Damideh, A. Sadighzadeh, A. Koohi et al., “Experimental study of the Iranian inertial electrostatic confinement fusion device as a continuous neutron generator,” Journal of Fusion Energy, vol. 31, no. 2, pp. 109–111, 2012.
[8]  G. H. Miley, Y. Yang, J. Webber, Y. Shaban, and H. Momota, “RF ion source-driven IEC design and operation,” Fusion Science and Technology, vol. 47, no. 4, pp. 1233–1237, 2005.
[9]  G. H. Miley, Y. Shaban, and Y. Yang, “RF ion gun injector in support of fusion ship II research and development,” AIP Conference Proceedings, vol. 699, no. 1, p. 406, 2004.
[10]  A. L. Wehmeyer, R. F. Radel, and G. L. Kulcinski, “Optimizing neutron production rates from DD fusion in an inertial electrostatic confinement device,” in Proceedings of the 6th ANS Topical Meeting on Fusion Energy, Madison, Wis, USA, September 2004.
[11]  C. C. Dietrich, Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion [Ph.D. thesis], MIT University, 2007.
[12]  E. H. Ebrahimi, R. Amrollahi, A. Sadighzadeh et al., “The influence of cathode voltage and discharge current on neutron production rate of inertial electrostatic confinement fusion (IR-IECF),” Journal of Fusion Energy, vol. 32, no. 1, pp. 62–65, 2013.
[13]  H. K. Cigizoglu, “Estimation, forecasting and extrapolation of river flows by artificial neural networks,” Hydrological Sciences Journal, vol. 48, no. 3, pp. 349–362, 2003.
[14]  Z. Liu and J. Liu, “Seismic-controlled nonlinear extrapolation of well parameters using neural networks,” Geophysics, vol. 63, no. 6, pp. 2035–2041, 1998.
[15]  ?. Ki?i, “Streamflow forecasting using different artificial neural network algorithms,” Journal of Hydrologic Engineering, vol. 12, no. 5, pp. 532–539, 2007.
[16]  C. M. Salgado, L. E. B. Brand?o, R. Schirru, C. M. N. A. Pereira, A. X. da Silva, and R. Ramos, “Prediction of volume fractions in three-phase flows using nuclear technique and artificial neural network,” Applied Radiation and Isotopes, vol. 67, no. 10, pp. 1812–1818, 2009.
[17]  F. Rahimi-Ajdadi and Y. Abbaspour-Gilandeh, “Artificial Neural Network and stepwise multiple range regression methods for prediction of tractor fuel consumption,” Measurement, vol. 44, no. 10, pp. 2104–2111, 2011.
[18]  F. J. de Cos Juez, M. A. Suárez-Suárez, F. Sánchez Lasheras, and A. Murcia-Mazón, “Application of neural networks to the study of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women,” Mathematical and Computer Modelling, vol. 54, no. 7-8, pp. 1665–1670, 2011.
[19]  A. Ebrahimzadeh and A. Khazaee, “Detection of premature ventricular contractions using MLP neural networks: a comparative study,” Measurement, vol. 43, no. 1, pp. 103–112, 2010.
[20]  A. R. Gallant and H. White, “On learning the derivatives of an unknown mapping with multilayer feedforward networks,” Neural Networks, vol. 5, pp. 129–138, 1992.
[21]  J. G. Taylor, Neural Networks and Their Applications, John Wiley & Sons, West Sussex, UK, 1996.
[22]  M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.
[23]  B.-H. Juang and S. Katagiri, “Discriminative learning for minimum error classification,” IEEE Transactions on Signal Processing, vol. 40, no. 12, pp. 3043–3054, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133