全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural and Thermal Analysis of Asphalt Solar Collector Using Finite Element Method

DOI: 10.1155/2014/602087

Full-Text   Cite this paper   Add to My Lib

Abstract:

The collection of solar energy using asphalt pavements has got a wide importance in the present energy scenario. Asphalt pavements subjected to solar radiation can reach temperature up to 70°C because of their excellent heat absorbing property. Many working parameters, such as pipe diameter, pipe spacing, pipe depth, pipe arrangement, and flow rate, influence the performance of asphalt solar collector. Existing literature on thermal energy extraction from asphalt pavements is based on the small scale laboratory samples and numerical simulations. In order to design an efficient asphalt solar collector there should be a payoff between the thermal and structural stability of the pavement, so that maximum heat can be absorbed without structural damage due to external load condition. This paper presents a combined thermal and structural analysis of asphalt solar collector using finite element method. Analysis is carried out in different models so as to obtain optimum pipe spacing, pipe diameter, depth, and pipe arrangement under the specified condition. 1. Introduction Sustainable supply of energy is the key factor that determines the development of an economy. The current growth rate of energy consumption will lead to complete scarcity of the major energy resource, fossil fuels, in the near future. The situation is most worrying because of the effect of major pollutants like CO2 on the earth atmosphere. This situation forced the researchers to think of green technologies by which the global energy production can be increased. This points to the importance of distributed power generation. Distributed small scale production can increase the global energy production and at the same time it has an advantage of low transmission cost. Asphalt solar collector is not a new technology. This system is employed in many countries for the purpose of heating and cooling of road pavements in winter and summer, respectively. By proper design the technology can be utilised to power some of the applications at the site where it is utilized (distributed power generation). Solar energy is the primary energy source for all other forms of energy which is green thermal source distributed around the globe. Road pavements can be considered as the largest solar thermal collector cum storage system on land. It receives solar radiation all the day and stores some of the energy from it. This energy is completely or partially dissipated to atmosphere by night time. Studies show that on an average summer day the temperature of an asphalt pavement can reach up to 60–70° because of its

References

[1]  K. Zwarycz, Snow Melting and Heating System Based on Geothermal Heat Pumps at Goleniow Airport, Poland, Reports, The United Nations University, 2012.
[2]  M. G. L. C. Loomans, H. Oversloot, A. de Bondt, R. Jansen, and H. van Rij, “Design tool for the thermal energy potential of asphalt pavements,” in Proceedings of the 8th International IBPSA Conference, vol. 8, pp. 745–752, Eindhoven, The Netherlands, August 2003.
[3]  S. Wu, M. Chen, H. Wang, and Y. Zhang, “Laboratory study on solar collector of thermal conductive asphalt,” International Journal of Pavement Research and Technology, vol. 2, no. 4, pp. 130–136, 2009.
[4]  R. B. Mallick, B.-L. Chen, and S. Bhowmick, “Harvesting energy from asphalt pavements and reducing the heat island effect,” International Journal of Sustainable Engineering, vol. 2, no. 3, pp. 214–228, 2009.
[5]  S. Wu, H. Wang, M. Chen, and Y. Zhang, “Numerical and experimental validation of full-depth asphalt slab using capturing solar energy,” in Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '10), pp. 1–4, Chengdu, China, June 2010.
[6]  W. Shaopeng, C. Mingyu, and Z. Jizhe, “Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs,” Applied Thermal Engineering, vol. 31, no. 10, pp. 1582–1587, 2011.
[7]  V. Bobes-Jesus, P. Pascual-Mu?oz, D. Castro-Fresno, and J. Rodriguez-Hernandez, “Asphalt solar collectors: a literature review,” Applied Energy, vol. 102, pp. 962–970, 2013.
[8]  P. Pascual-Mu?oz, D. Castro-Fresno, P. Serrano-Bravo, and A. Alonso-Estébanez, “Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors,” Applied Energy, vol. 111, pp. 324–334, 2013.
[9]  H. Wang, S. Wu, M. Chen, and Y. Zhang, “Numerical simulation on the thermal response of heat-conducting asphalt pavements,” Physica Scripta, vol. 3, 2010.
[10]  AASHTO, Guide for Design of Pavement Structures, American Associates for State Highway and Transportation Officials, Washington, DC, USA, 1993.
[11]  I.S.I.2825-1969, Code for Pressure Vessel Design, Bureau of Indian Standards, New Delhi, India, 1969.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133