Effect of Chitosan Loading on the Morphological, Thermal, and Mechanical Properties of Diglycidyl Ether of Bisphenol A/Hexamethylenediamine Epoxy System
The effect of chitosan filled diglycidyl ether of bisphenol A (DGEBA) epoxy system were investigated using the thermal, mechanical, and morphological properties. The mixing ratio of resin/hardener was kept constant while the chitosan of 1.0, 2.5, 5.0, 7.5, and 10 weight percentage (wt%) was incorporated into the system. The thermal stability and the transition behaviour of the chitosan filled epoxy system were analysed through a differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) while atomic force microscope (AFM) and scanning electron microscopy (SEM) were used to investigate the morphology. It was observed that the additive tends to agglomerate, with the formation of clear phase separation, when the chitosan content increases above 5?wt%. At lower chitosan loading (2.5?wt% and below), relatively uniform dispersion of the additive can be achieved. The thermal stability of the system increases with chitosan loading while the mechanical tensile strength is compromised. 1. Introduction Epoxy resins are molecules containing one or more α- or 1, 2-epoxide groups, which can be crosslinked to form three-dimensional (3D) thermoset network structure. The degree of crosslinking and hence the material properties can be controlled by varying the amount of the resin hardener system, controlled curing over a wide range of temperatures and introduction of additives or fillers. Epoxy has been extensively used in a wide range of industrial applications owing to its excellent adhesiveness, resistance to heat and common chemical, mechanical strength, and electrical insulating properties. However, the material remains excessively brittle once cured and suffers from low impact strength, poor fracture toughness, and resistance to crack propagation. Du?ek et al. [1] pointed out that alternating mechanism of network formation in DGEBA amine hardener system does not offer the potential of partial segregation for the formation of inhomogeneous crosslinking. On the other hand, more pronounced inhomogeneity may be promoted through thermodynamic incompatibility or nonalternating curing mechanisms in more complicated thermosetting systems. Over the past decade, various attempts to enhance the toughness of epoxy system have been carried out by incorporating fillers into epoxidesto produce a variant form of epoxy resin coupled with different chemical compositions. Review of the literature shows that majority of the previous work employed thermoplastic, rubber, and elastomer compounds as toughening agents in
References
[1]
K. Du?ek, J. Ple?til, F. Lednicky, and S. Luňák, “Are cured epoxy resins inhomogeneous?” Polymer, vol. 19, no. 4, pp. 393–397, 1978.
[2]
S. L. Selektor, M. Y. Semyachkin, and V. V. Arslanov, “A composite hardener for epoxy adhesives,” Russian Journal of Applied Chemistry, vol. 76, no. 8, pp. 1331–1336, 2003.
[3]
B. Qi, Q. X. Zhang, M. Bannister, and Y.-W. Mai, “Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives,” Composite Structures, vol. 75, no. 1–4, pp. 514–519, 2006.
[4]
M. Tiitu, A. Talo, O. Forsén, and O. Ikkala, “Aminic epoxy resin hardeners as reactive solvents for conjugated polymers: polyaniline base/epoxy composites for anticorrosion coatings,” Polymer, vol. 46, no. 18, pp. 6855–6861, 2005.
[5]
Z. Zhang and N. Yu, “Studies on isotactic poly(phenyl glycidyl ether)-modified epoxy resins. II. Toughening of epoxy resins,” Journal of Applied Polymer Science, vol. 84, no. 6, pp. 1223–1232, 2002.
[6]
M. Ochi, T. Morishita, S. Kokufu, and M. Harada, “Network chain orientation in the toughening process of the elastomer modified mesogenic epoxy resin,” Polymer, vol. 42, no. 24, pp. 9687–9695, 2001.
[7]
V. Nigam, D. K. Setua, and G. N. Mathur, “Failure analysis of rubber toughened epoxy resin,” Journal of Applied Polymer Science, vol. 87, no. 5, pp. 861–868, 2002.
[8]
V. L. Pereira Soares, V. D. Ramos, G. W. M. Rangel, and R. S. V. Nascimento, “Hydroxy-terminated polybutadiene toughened epoxy resin: chemical modification, microstructure, and impact strength,” Advances in Polymer Technology, vol. 21, no. 1, pp. 25–32, 2002.
[9]
Y.-L. Liu, Y.-J. Chen, and W.-L. Wei, “Novel thermosetting resins based on 4-(N-maleimidophenyl)glycidylether: I. Preparation and characterization of monomer and cured resins,” Polymer, vol. 44, no. 21, pp. 6465–6473, 2003.
[10]
M. R. Zhang, A Review of the Epoxy Resin Toughening, Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, NY, USA, 2003.
[11]
H. Cai, J. Wang, X. Wang, and R. Xu, “Isocyanate-terminated polyethers toughened epoxy resin: chemical modification, thermal properties, and mechanical strength,” Journal Wuhan University of Technology, Materials Science Edition, vol. 22, no. 2, pp. 256–260, 2007.
[12]
R. D. Brooker, A. J. Kinloch, and A. C. Taylor, “The morphology and fracture properties of thermoplastic-toughened epoxy polymers,” Journal of Adhesion, vol. 86, no. 7, pp. 726–741, 2010.
[13]
R. A. Pearson and A. F. Yee, “Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide),” Polymer, vol. 34, no. 17, pp. 3658–3670, 1993.
[14]
I. Aranaz, R. Harris, and A. Heras, “Chitosan amphiphilic derivatives. Chemistry and applications,” Current Organic Chemistry, vol. 14, no. 3, pp. 308–330, 2010.
[15]
S. Ritzenthaler, E. Girard-Reydet, and J. P. Pascault, “Influence of epoxy hardener on miscibility of blends of poly(methyl methacrylate) and epoxy networks,” Polymer, vol. 41, no. 16, pp. 6375–6386, 2000.
[16]
K. Mimura, H. Ito, and H. Fujioka, “Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins,” Polymer, vol. 41, no. 12, pp. 4451–4459, 2000.
[17]
S. A. Shokralla and N. S. Al-Muaikel, “Thermal properties of epoxy (DGEBA)/phenolic resin (NOVOLAC) blends,” The Arabian Journal for Science and Engineering, vol. 35, no. 1B, pp. 7–14, 2010.
[18]
S.-J. Park, F.-L. Jin, and J.-R. Lee, “Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil,” Materials Science and Engineering A, vol. 374, no. 1-2, pp. 109–114, 2004.
[19]
E. Mahapoka, P. Arirachakaran, A. Watthanaphanit, R. Rujiravanit, and S. Poolthong, “Chitosan whiskers from shrimp shells incorporated into dimethacrylate based dental resin sealant,” Dental Materials Journal, vol. 31, no. 2, pp. 273–279, 2012.
[20]
M. G. González, J. G. Cabanelas, and J. Baselga, “Applications of FTIR on epoxy resins—identification, monitoring the curing process, phase separation and water uptake,” in Infrared Spectroscopy—Materials Science, Engineering and Technology, T. Theophanides, Ed., pp. 261–284, InTech, 2012.
[21]
C. Radhakumary, P. D. Nair, S. Mathew, and C. P. R. Nair, “Biopolymer composite of chitosan and methyl methacrylate for medical applications,” Trends in Biomaterials and Artificial Organs, vol. 18, no. 2, pp. 117–124, 2005.
[22]
M. Rutnakornpituk, P. Ngamdee, and P. Phinyocheep, “Preparation and properties of polydimethylsiloxane-modified chitosan,” Carbohydrate Polymers, vol. 63, no. 2, pp. 229–237, 2006.