The experimental determination of the resistance to delamination is very important in aerospace applications as composite materials have superior properties only in the fiber direction. To measure the interlaminar fracture toughness of composite materials, different kinds of specimens and experimental methods are available. This article examines the fracture energy of four-point end-notched flexure (4ENF) composite specimens made of carbon/epoxy and glass/epoxy. Experiments were conducted on these laminates and the mode II fracture energy, , was evaluated using compliance method and was compared with beam theory solution. The crack growth resistance curve (R-curve) for these specimens was generated and the found glass/epoxy shows higher toughness values than carbon/epoxy composite. From this study, it was observed that R-curve effect in 4ENF specimens is quite mild, which means that the measured delamination toughness, , is more accurate. 1. Introduction Owing to their high stiffness and strength combined with low weight, polymer matrix composites have become more appropriate structural materials for aerospace applications. However, the usual laminated nature and the relatively low matrix strength make them particularly susceptible to delamination. The highly anisotropic nature of laminated composite structures causes a mismatch in mechanical properties between individual lamina within the laminate, which in turn can produce interlaminar crack initiation and propagation. For example, low velocity impact can generate relatively large delamination, which is highly detrimental to compressive load because of localized buckling phenomena [1]. Testing of thin skin stiffened panels designed for aircraft fuselage applications has shown that bond failure at the tip of the frame flange is a very important failure mode. Debonding also occurs when a thin-gage composite fuselage panel is allowed to buckle in service [2]. The growing use of composite materials in aircraft and spacecraft applications has motivated researchers to understand their fracture behaviour and damage mechanisms. Hence, fracture characterization of composites structures attains special relevancy. Most of the composites currently in service contain only two-dimensional (in-plane) reinforcement and delamination remains an important failure mode in such composites. The development of standardised test methods to characterize the resistance to interlaminar crack propagation is necessary for two main reasons: (i) such tests offer the possibility to compare existing and new materials on the same
References
[1]
A. B. de Morais, C. C. Rebelo, P. M. S. T. de Castro, A. T. Marques, and P. Davies, “Interlaminar fracture studies in Portugal: past, present and future,” Fatigue & Fracture of Engineering Materials & Structures, vol. 27, no. 9, pp. 767–773, 2004.
[2]
T. K. O'Brien, “Fracture mechanics of composite delamination,” in ASM Handbook, Composites, vol. 21, pp. 241–245, ASM International, 2001.
[3]
“Testing methods for interlaminar fracture toughness of carbon fiber reinforced plastics,” Japanese Industrial Standard Group, JIS K-7086-1993 ,1993.
[4]
B. R. K. Blackman, A. J. Brunner, and J. G. Williams, “Mode II fracture testing of composites: a new look at an old problem,” Engineering Fracture Mechanics, vol. 73, no. 16, pp. 2443–2455, 2006.
[5]
ISO, “Fibre-reinforced plastic composites—determination of the mode II fracture resistance for unidirectionally reinforced materials using the calibrated end-loaded split (C-ELS) test and an effective crack length approach,” ISO 15114:2014, 2014.
[6]
L. A. Carlsson, J. W. Gillespie Jr., and R. B. Pipes, “On the analysis and design of the end notched flexure (ENF) specimen for mode II testing,” Journal of Composite Materials, vol. 20, no. 6, pp. 594–604, 1986.
[7]
H. Wang and T. Vu-Khanh, “Use of end-loaded-split (ELS) test to study stable fracture behaviour of composites under mode II loading,” Composite Structures, vol. 36, no. 1-2, pp. 71–79, 1996.
[8]
B. D. Davidson and S. S. Teller, “Recommendations for an ASTM standardized test for determining GIIc of unidirectional laminated polymeric matrix composites,” Journal of ASTM International, vol. 7, no. 2, Article ID JAI102619, 2010.
[9]
R. H. Martin and B. Davidson, “Mode II fracture toughness evaluation using a four point bend end notched flexure test,” in Proceedings of the 4th International Deformation and Fracture of Composites Conference, pp. 243–252, London, UK, 1997.
[10]
R. H. Martin, “Protocol for the determination of the mode II delamination resistance of unidirectional fiber reinforced polymer matrix composites using the four point bend end notched flexure (4ENF) specimen,” MERL, reference 8-1-98. Protocol used for VAMAS Round robin tests, 1998.
[11]
P. Davies, G. D. Sims, B. R. K. Blackman, et al., “Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international collaborative test programme,” Plastics, Rubber and Composites, vol. 28, no. 9, pp. 432–437, 1999.
[12]
K. Kageyama, I. Kimpara, T. Suzuki, H. Ohsawa, M. Kanai, and H. Tsuno, “Effects of test conditions on mode II interlaminar fracture toughness of four-point ENF specimens,” in Proceedings of the 12th International Conference on Composite Materials, pp. 362–369, Paris, France, 1999.
[13]
C. Fan, P. Y. B. Jar, and J. J. R. Cheng, “Internal-notched flexure test for measurement of mode II delamination resistance of fibre-reinforced polymers,” Journal of Composites, vol. 2013, Article ID 695862, 7 pages, 2013.
[14]
H. Maikuma, J. W. Gillespie, and J. M. Whitney, “Analysis and experimental characterization of the center notch flexural test specimen for mode II interlaminar fracture,” Journal of Composite Materials, vol. 23, no. 8, pp. 756–786, 1989.
[15]
C. Schuecker and B. D. Davidson, “Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination,” Composites Science and Technology, vol. 60, no. 11, pp. 2137–2146, 2000.
[16]
K. Tohgo, D. Fukuhara, and A. Hadano, “The influence of debonding damage on fracture toughess and crack-tip field in glass-particle-reinforced Nylon 66 composites,” Composites Science and Technology, vol. 61, no. 8, pp. 1005–1016, 2001.
[17]
C.-A. Wang, Y. Huang, and Z. Xie, “Improved Resistance to damage of silicon carbide-whisker-reinforced silicon nitride-matrix composites by whisker-oriented alignment,” Journal of the American Ceramic Society, vol. 84, no. 1, pp. 161–164, 2001.
[18]
G. Reyes V. and W. J. Cantwell, “The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene,” Composites Science and Technology, vol. 60, no. 7, pp. 1085–1094, 2000.
[19]
D. L. Hunston, R. J. Moulton, J. J. Johnston, and W. D. Bascom, “Matrix resin effects in composite delamination: mode I fracture aspects,” in ASTM STP 937, N. J. Johnston, Ed., pp. 74–94, American Society for Testing and Materials, Philadelphia, Pa, USA, 1987.
[20]
X. Li, L. A. Carlsson, and P. Davies, “Influence of fiber volume fraction on mode III interlaminar fracture toughness of glass/epoxy composites,” Composites Science and Technology, vol. 64, no. 9, pp. 1279–1286, 2004.
[21]
P. Davies, P. Casari, and L. A. Carlsson, “Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen,” Composites Science and Technology, vol. 65, no. 2, pp. 295–300, 2005.
[22]
H. Chai, “Shear fracture,” International Journal of Fracture, vol. 37, no. 2, pp. 137–159, 1988.
[23]
L. A. Carlsson, “Fracture of laminated composites with interleaves,” in Fracture of Composites, E. A. Armanios, Ed., vol. 120-121 of Key Engineering Material, pp. 489–520, Trans Tech Publications, 1996.
[24]
K. Kageyama, M. Kikuchi, and N. Yanagisawa, “Stabilized end notched flexure test. Characterization of Mode II interlaminar crack growth,” in Proceedings of the 3rd Symposium on Composite Materials: Fatigue and Fracture, T. K. O’Brien, Ed., ASTM STP 1110, pp. 210–225, American Society for Testing and Materials, Philadelphia, Pa, USA, November 1989.
[25]
K. Kageyama, I. Kimpara, I. Ohsawa, M. Hojo, and S. Kabashima, “Mode I and mode II delamination growth of interlayer toughened carbon/epoxy (T800H/3900-2) composite system,” in Composite Materials: Fatigue and Fracture—Fifth Volume, R. H. Martin, Ed., vol. 5 of ASTM STP 1230, pp. 19–37, American Society for Testing and Materials, 1995.
[26]
C. Schueker and B. D. Davidson, “Effect of friction on the perceived mode II delamination toughness from three- and four-point bend end notched flexure tests,” in Composite Structures: Theory and Practice, P. E. Grant and C. Q. Rousseau, Eds., vol. 1383, pp. 334–344, ASTM STP, American Society of Testing of Materials, 2000.
[27]
T. K. O'Brien, G. B. Murri, and S. A. Salpekar, “Interlaminar shear fracture toughness and fatigue thresholds for composite materials,” in Composite Materials: Fatigue and Fracture, P. A. Lagace, Ed., vol. 2 of ASTM STP 1012, pp. 222–250, American Society of Testing of Materials, 1989.
[28]
B. D. Davidson, C. S. Altonen, and J. J. Polaha, “Effect of stacking sequence on delamination toughness and delamination growth behavior in composite end-notched flexure specimens,” in Composite Materials: Testing and Design (12th Volume), ASTM STP 1274, R. B. Deo and C. R. Staff, Eds., pp. 393–413, American Society of Testing of Materials, Philadelphia, Pa, USA, 1996.
[29]
D. Cartié, P. Davies, M. Peleau, and I. K. Partridge, “The influence of hydrostatic pressure on the interlaminar fracture toughness of carbon/epoxy composites,” Composites B: Engineering, vol. 37, no. 4-5, pp. 292–300, 2006.
[30]
P. Davies, B. R. K. Blackman, and A. J. Brunner, “Standard test methods for delamination resistance of composite materials: current status,” Applied Composite Materials, vol. 5, no. 6, pp. 345–364, 1998.
[31]
A. B. de Morais and M. F. S. F. de Moura, “Evaluation of initiation criteria used in interlaminar fracture tests,” Engineering Fracture Mechanics, vol. 73, no. 16, pp. 2264–2276, 2006.
[32]
B. D. Davidson, “Towards an ASTM standardized test for determining GIIc of unidirectional laminated polymeric matrix composites,” in Proceedings of the 21st Annual American Society for Composites Technical Conference, P. K. Mallick, Ed., DEStech Publications, September 2006.
[33]
E. Zile and V. Tamuzs, “Mode II delamination of a unidirectional carbon fiber/epoxy composite in four-point bend end-notched flexure tests,” Mechanics of Composite Materials, vol. 41, no. 5, pp. 383–390, 2005.
[34]
A. J. Vinciquerra and B. D. Davidson, “Effect of crack length measurement technique and data reduction procedures on the perceived toughness from four-point bend end-notched flexure tests,” Journal of Reinforced Plastics and Composites, vol. 23, no. 10, pp. 1051–1062, 2004.
[35]
R. H. Martin and B. D. Davidson, “Mode II fracture toughness evaluation using four point bend, end notched flexure test,” Plastics, Rubber and Composites, vol. 28, no. 8, pp. 401–406, 1999.
[36]
V. A. Franklin and T. Christopher, “Fracture energy estimation of DCB specimens made of glass/epoxy: an experimental study,” Advances in Materials Science and Engineering, vol. 2013, Article ID 412601, 7 pages, 2013.
[37]
V. A. Franklin and T. Christopher, “Generation and validation of crack growth resistance curve from DCB specimens: an experimental study,” Strength of Materials, vol. 45, no. 6, pp. 674–683, 2013.
[38]
V. Alfred Franklin, T. Christopher, and B. Nageswara Rao, “Influence of root rotation on delamination fracture toughness of composites,” International Journal of Aerospace Engineering, vol. 2014, Article ID 829698, 12 pages, 2014.
[39]
R. H. Martin, T. Elms, and S. Bowron, “Characterization of mode II delamination using the 4ENF,” in Proceedings of the 4th European Conference on Composites: Testing & Standardisation, pp. 161–170, 1998.
[40]
P. Hansen and R. H. Martin, “DCB, 4ENF and MMB delamination characterisation of S2/8552 and IM7/8552,” in Proceedings of the 15th Annual Technical Conference on Composite Materials, 2000.
[41]
A. Korjakin, R. Rikards, F.-G. Buchholz, H. Wang, A. K. Bledzki, and A. Kessler, “Comparative study of interlaminar fracture toughness of GFRP with different fiber surface treatments,” Polymer Composites, vol. 19, no. 6, pp. 793–806, 1998.
[42]
A. Szekrényes, Delamination of composite specimens [Ph.D. dissertation], Budapest University of Technology and Economics, Budapest, Hungary, 2005.
[43]
F. Ozdil and L. A. Carlsson, “Beam analysis of angle-ply laminate mixed-mode bending specimens,” Composites Science and Technology, vol. 59, no. 6, pp. 937–945, 1999.
[44]
S. Hashemi, J. Kinloch, and J. G. Williams, “The effects of geometry, rate and temperature on mode I, mode II and mixed-mode I/II interlaminar fracture toughness of carbon-fibre/poly(ether-ether ketone) composites,” Journal of Composite Materials, vol. 24, no. 9, pp. 918–956, 1990.
[45]
S. Hashemi, A. J. Kinloch, and J. G. Williams, “Mechanics and mechanisms of delamination in a poly(ether sulphone)-Fibre composite,” Composites Science and Technology, vol. 37, no. 4, pp. 429–462, 1990.
[46]
H. Albertsen, J. Ivens, P. Peters, M. Wevers, and I. Verpoest, “Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: part 1. Experimental results,” Composites Science and Technology, vol. 54, no. 2, pp. 133–145, 1995.
[47]
J. J. Polaha, B. D. Davidson, R. C. Hudson, and A. Pieracci, “Effects of mode ratio, ply orientation and precracking on the delamination toughness of a laminated composite,” Journal of Reinforced Plastics and Composites, vol. 15, no. 2, pp. 141–173, 1996.
[48]
C. Dahlen and G. S. Springer, “Delamination growth in composites under cyclic loads,” Journal of Composite Materials, vol. 28, no. 8, pp. 732–781, 1994.
[49]
B. D. Davidson and K. L. Koudela, “Influence of the mode mix of precracking on the delamination toughness of laminated composites,” Journal of Reinforced Plastics and Composites, vol. 18, no. 15, pp. 1408–1414, 1999.
[50]
J. W. Gillespie, L. A. Carlsson, R. B. J. Pipes, R. Rothschilds, B. Trethewey, and A. Smiley, “Delamination growth in composite materials,” NASA-CR 178066, 1986.