Hybrid polylactide acid (PLA) composites reinforced with palm empty fruit bunch (EFB) and chopped strand E-glass (GLS) fibres were investigated. The hybrid fibres PLA composite was prepared through solution casting followed by pelletisation and subsequent hot compression press into 1?mm thick specimen. Chloroform and dichloromethane were used as solvent and their effectiveness in dissolving PLA was reported. The overall fibre loading was kept constant at volume fraction, , of 20% while the ratio of EFB to GLS fibre was varied between of 0?:?20 to 20?:?0. The inclusion of GLS fibres improved the tensile and flexural performance of the hybrid composites, but increasing the glass fibre length from 3 to 6?mm has a negative effect on the mechanical properties of the hybrid composites. Moreover, the composites that were prepared using chloroform showed superior tensile and flexural properties compared to those prepared with dichloromethane. 1. Introduction Fibre reinforced composites based on carbon, glass, and Kevlar have been widely used in the aviation, automotive, marine, sport, and defence industries, attributed to their high strength to weight ratio, easy formability, and high tensile and fracture resistance. However, synthetic fibres are generally manufactured through energy intensive processes that produce toxic by-products while their reinforced composites are difficult to recycle and resistant to biodegradation [1]. Increasing governmental pressure as well as consumer and industrial awareness on the long-term effect of environmental pollution due to noncompostable polymeric products has led numerous researchers around the world to have gained interest to develop greener composites by either eliminating or minimising the usage of nondegradable synthetic polymeric resin and fibres. Biodegradable polymeric resins generally can be categorised into two groups depending on their origin, natural biopolymers (polymer derived from natural resources such as starch, cellulose, gelatine, casein, wheat gluten, silk, wool, plant oils, and polylactic acid), and synthetic biopolymers (mineral based biopolymer synthesised from crude oil with example including aliphatic polycaprolactone, aromatic polybutylene succinate terephthalate, and polyvinyl alcohols) Amongst the many natural-origin biodegradable polymers, polylactic acid (PLA), a corn-based biodegradable polyester obtained from fermentation of sugar feedstock, is gaining its popularity in the scientific community [2–4] and was chosen as the binding matrix material in this work. Motivated by the growing
References
[1]
M. Karina, H. Onggo, A. H. D. Abdullah, and A. Syampurwadi, “Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin,” Journal of Biological Sciences, vol. 8, no. 1, pp. 101–106, 2008.
[2]
G. Kale, R. Auras, S. P. Singh, and R. Narayan, “Biodegradability of polylactide bottles in real and simulated composting conditions,” Polymer Testing, vol. 26, no. 8, pp. 1049–1061, 2007.
[3]
R. Auras, S. P. Singh, and J. Singh, “Performance evaluation of PLA against existing PET and PS containers,” Journal of Testing and Evaluation, vol. 34, no. 6, 2006.
[4]
V. Siracusa, P. Rocculi, S. Romani, and M. D. Rosa, “Biodegradable polymers for food packaging: a review,” Trends in Food Science and Technology, vol. 19, no. 12, pp. 634–643, 2008.
[5]
O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Progress in Polymer Science, vol. 37, no. 11, pp. 1552–1596, 2012.
[6]
A. K. Mohanty, M. Misra, and G. Hinrichsen, “Biofibres, biodegradable polymers and biocomposites: an overview,” Macromolecular Materials and Engineering, vol. 276-277, no. 1, pp. 1–24, 2000.
[7]
S. Shinoj, R. Visvanathan, S. Panigrahi, and M. Kochubabu, “Oil palm fiber (OPF) and its composites: a review,” Industrial Crops and Products, vol. 33, no. 1, pp. 7–22, 2011.
[8]
F. C. Campbell, Manufacturing Processes for Advanced Composites, Elsevier, 2004.
[9]
A. B. A. Hariharan and H. P. S. A. Khalil, “Lignocellulose-based hybrid bilayer laminate composite: part I—studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin,” Journal of Composite Materials, vol. 39, no. 8, pp. 663–684, 2005.
[10]
H. D. Rozman, G. S. Tay, R. N. Kumar, A. Abusamah, H. Ismail, and Z. A. Mohd. Ishak, “Polypropylene-oil palm empty fruit bunch-glass fibre hybrid composites: a preliminary study on the flexural and tensile properties,” European Polymer Journal, vol. 37, no. 6, pp. 1283–1291, 2001.
[11]
J. L. Thomason, “The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6,” Composites A: Applied Science and Manufacturing, vol. 40, no. 2, pp. 114–124, 2009.
[12]
Natureworks PLA Polymer 3052D Technical Data Sheet: Injection Molding Process Guide, NW3052D_120213V1, NatureWorks LLC, Minnetonka, 1-3, 20 13.
[13]
R. Mahjoub, J. Bin Mohamad Yatim, and A. R. Mohd Sam, “A review of structural performance of oil palm empty fruit bunch fiber in polymer composites,” Advances in Materials Science and Engineering, vol. 2013, Article ID 415359, 9 pages, 2013.
[14]
M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study,” Composites Science and Technology, vol. 66, no. 11-12, pp. 1813–1824, 2006.
[15]
C. C. Chamis, “Mechanics of load transfer at the fiber/matrix interface,” NASA TN D-6588, National Aeronautics and Space Administration, Washington, D. C., USA, 1972.
[16]
I. Aranberri-Askargorta, T. Lampke, and A. Bismarck, “Wetting behavior of flax fibers as reinforcement for polypropylene,” Journal of Colloid and Interface Science, vol. 263, no. 2, pp. 580–589, 2003.
[17]
C. Hansen, Hansen Solubility Parameters: A User's Handbook, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2007.
[18]
T. S. Lee, A. R. Rahmat, and W. A. W. A. Rahman, Polylactic Acid: PLA Biopolymer Technology and Applications, Technology & Engineering, William Andrew, 2012.
[19]
R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, “Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter,” Polymer, vol. 55, no. 18, pp. 4728–4737, 2014.
[20]
Y. Byun, S. Whiteside, R. Thomas, M. Dharman, J. Hughes, and Y. T. Kim, “The effect of solvent mixture on the properties of solvent cast polylactic acid (PLA) film,” Journal of Applied Polymer Science, vol. 124, no. 5, pp. 3577–3582, 2012.