全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Visual Detection and Determination of Melamine Using Synthetic Dyes

DOI: 10.1155/2014/457254

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have used spectroscopic technique for the detection of melamine. The effect of melamine on the colour as well as the pH of bromophenol, methyl red and alizarin red dye solutions was examined at different mole ratios. It is found that we observe color transition and the absorption maxima for bromophenol were at 598?nm, while for methyl red, and alizarin red-S dye they are at 520?nm and 423?nm, respectively. We observe an increase in the absorption intensities at 598?nm with increase in the concentration of melamine in bromophenol blue dye. The absorption intensities at 520?nm decreases and new peak at 420?nm emerges in methyl red dye-melamine mixture. While the absorption intensities at 420?nm decreases and 520?nm peak emerges in alizarin red S dye-melamine at higher mole ratios. The results indicate that we can choose the appropriate dye of suitable range to detect the concentration of melamine from 3 to 206?mg?dm?3. The results demonstrate possible use of the simple method for the qualitative and quantitative detection of melamine in adulterated food samples. 1. Introduction Melamine is a weak organic base with the chemical formula C3N6H6 which contains 67% of nitrogen mass. Melamine in combination with formaldehyde produces melamine resin and has been widely used as fire retardant for the release of nitrogen when burned [1, 2]. Melamine foam has also been employed as a colourant, superplasticizer, polymeric cleansing product, insulator and so forth [3]. In early 1950 and 1960s, melamine was used as nonprotein food source for ruminants and also as source of nitrogen for food crops [4]. Development of dairy industries in last few decades has resulted in the promotion of adulterating the food products across the world with an ulterior motive to gain higher profits [5]. Several thousand people die every year due to the consumption of adulterated food. One of the classic examples is the sudden death of infants and pets across the world in 2007 and 2008 due to the adulteration of infant milk powder and pet food with melamine [6]. One of the most widely used methods to detect the protein content in the samples is by using Kjeldahl and Dumas test. In this test, nitrogen content will be estimated to obtain information about the protein content [7]. Melamine contains higher percentage of nitrogen content and this promoted the food industries to adulterate the food products with melamine illegally to enhance the apparent nitrogen content in the milk powder during the estimation of protein levels [8]. Alternative techniques used for the detection of melamine

References

[1]  E. D. Weil and V. Choudhary, “Flame-retarding plastics and elastomers with melamine,” Journal of Fire Science, vol. 13, no. 2, pp. 104–126, 1995.
[2]  T. Sugita, H. Ishiwata, and K. Yoshihira, “Release of formaldehyde and melamine from tableware made of melamine-formaldehyde resin,” Food Additives and Contaminants, vol. 7, no. 1, pp. 21–27, 1990.
[3]  A. M. Grabiec, “Contribution to the knowledge of melamine superplasticizer effect on some characteristics of concrete after long periods of hardening,” Cement and Concrete Research, vol. 29, no. 5, pp. 699–704, 1999.
[4]  R. D. Hauck and H. F. Stephenson, “Nitrification of triazine nitrogen,” Journal of Agricultural and Food Chemistry, vol. 12, no. 2, pp. 147–151, 1964.
[5]  USEPA, “Cyromazine; pesticide tolerance,” (United States Environmental Protection Agency) Federal Register, vol. 64, p. 50043, 1999.
[6]  L. Zhang, L.-L. Wu, Y.-P. Wang, A.-M. Liu, C.-C. Zou, and Z.-Y. Zhao, “Melamine-contaminated milk products induced urinary tract calculi in children,” World Journal of Pediatrics, vol. 5, no. 1, pp. 31–35, 2009.
[7]  S. Ehling, S. Tefera, and I. P. Ho, “High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid,” Food Additives and Contaminants, vol. 24, no. 12, pp. 1319–1325, 2007.
[8]  C. M.-E. Gossner, J. Schlundt, P. B. Embarek et al., “The melamine incident: implications for international food and feed safety,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1803–1808, 2009.
[9]  C. A. J. Brown, “Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007,” Journal of Veternary Diagnostic Investigation, vol. 19, no. 5, pp. 525–531, 2004.
[10]  F. N. Ihunegbo, S. Tesfalidet, and W. Jiang, “Determination of melamine in milk powder using zwitterionic HILIC stationary phase with UV detection,” Journal of Separation Science, vol. 33, no. 6-7, pp. 988–995, 2010.
[11]  H. A. Cook, C. W. Klampfl, and W. Buchberger, “Analysis of melamine resins by capillary zone electrophoresis with electrospray ionization-mass spectrometric detection,” Electrophoresis, vol. 26, no. 7-8, pp. 1576–1583, 2005.
[12]  A. J. Dane and R. B. Cody, “Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry,” Analyst, vol. 135, no. 4, pp. 696–699, 2010.
[13]  L. Li, B. Li, D. Cheng, and L. Mao, “Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe,” Food Chemistry, vol. 122, no. 3, pp. 895–900, 2010.
[14]  L. J. Mauer, A. A. Chernyshova, A. Hiatt, A. Deering, and R. Davis, “Melamine detection in infant formula powder using near- and mid-infrared spectroscopy,” Journal of Agricultural and Food Chemistry, vol. 57, no. 10, pp. 3974–3980, 2009.
[15]  Q. Wang, S. A. Haughey, Y.-M. Sun et al., “Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder,” Analytical and Bioanalytical Chemistry, vol. 399, no. 6, pp. 2275–2284, 2011.
[16]  J. Xia, N. Zhou, Y. Liu, B. Chen, Y. Wu, and S. Yao, “Simultaneous determination of melamine and related compounds by capillary zone electrophoresis,” Food Control, vol. 21, no. 6, pp. 912–918, 2010.
[17]  H. Kuang, W. Chen, W. Yan et al., “Crown ether assembly of gold nanoparticles: melamine sensor,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2032–2037, 2011.
[18]  W. J. Qi, D. Wu, J. Ling, and C. Z. Huang, “Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition,” Chemical Communications, vol. 46, no. 27, pp. 4893–4895, 2010.
[19]  H. Chi, B. Liu, G. Guan, Z. Zhang, and M.-Y. Han, “A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles,” Analyst, vol. 135, no. 5, pp. 1070–1075, 2010.
[20]  Z. H. Qin, H. W. Zhao, C. Z. Huang, and L. P. Wu, “Visual detection of melamine in raw milk by label-free silver nanoparticles,” Chemistry Letters, vol. 38, pp. 470–471, 2009.
[21]  X. S. Liang, H. P. Wei, Z. Q. Cui, J. Y. Deng, Z. P. Zhang, and X. Y. You, “One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk,” Analyst, vol. 136, pp. 179–183, 2010.
[22]  I. M. Kolthoff, Acid Base Indictors, Read Books, 2007.
[23]  R. W. Sabnis, Handbook of Acid-Base Indicators, CRC Press, Boco Raton, Fla, USA, 2008.
[24]  R. E. Davis, M. L. Peck, and G. S. George, Chemistry, Cenage Learning, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133