Potentially toxic elements (PTEs) in soils are mainly associated with the solid phase, bound to the surface of solid components, or precipitated as minerals. For most PTEs, only a small portion is dissolved in the soil solution. However, there is an interest in following the fate of mobile PTEs in the environment, for a growing amount of evidence indicates that downward movement of PTEs may occur in biosolids amended soils, leading to groundwater contamination. Therefore, it is crucial to understand the factors that control the release of these elements after land application of biosolids, in order to overcome problems related to downward movement of PTEs in the soil profile. 1. Introduction The treatment of municipal wastewater produces huge amounts of sludge. This material consists of the solids that were originally present in the wastewater and/or new suspended materials originated as the result of wastewater treatment processes [1]. The term biosolid was officially recognized in 1991 by the Water Environment Federation (WEF) and refers to the organic solids that have received a biological stabilization treatment at the municipal wastewater treatment plant, to make a distinction from other types of sludges that cannot be beneficially recycled as a soil amendment. In recent years, the quantity of biosolids generated all over the world has increased dramatically, and this trend is expected to increase many folds in the years to come. The safe disposal of biosolids is a major environmental concern. Since biosolids contain significant amounts of macro- and micronutrients [2–4], land application of this waste is an economically attractive management strategy. Biosolids contain a high concentration of organic matter, which can ameliorate soil quality by improving soil structure, water-holding capacity, air, and water transport [5]. Nonetheless, the presence of biosolids-borne potentially toxic elements (PTEs) such as cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni), and zinc (Zn) is the most critical long-term hazard when this amendment is land applied. Elevated levels of PTEs in agricultural soils may adversely affect soil’s quality and may represent an ecological and human health risk if they enter the food chain or leach into ground waters, ultimately causing metabolic disorder and chronic diseases in humans. Potentially toxic elements accumulation in soils and, in some cases, in crops has been reported when biosolids have been applied for a long time [6–8]. When PTEs are introduced into the soil, they may be subjected to a series of
References
[1]
P. A. Vesilind, G. C. Hartman, and M. E. T. Skene, Sludge Management and Disposal, Lewis Publishing, Chelsea, UK, 1986.
[2]
R. S. Corrêa, R. E. White, and A. J. Weatherley, “Effect of compost treatment of sewage sludge on nitrogen behavior in two soils,” Waste Management, vol. 26, no. 6, pp. 614–619, 2006.
[3]
S. I. Torri and R. S. Lavado, “Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge,” Waste Management, vol. 28, no. 5, pp. 821–832, 2008.
[4]
S. I. Torri and R. Lavado, “Zinc distribution in soils amended with different kinds of sewage sludge,” Journal of Environmental Management, vol. 88, no. 4, pp. 1571–1579, 2008.
[5]
M. Tejada and J. L. Gonzalez, “Application of different organic wastes on soil properties and wheat yield,” Agronomy Journal, vol. 99, no. 6, pp. 1597–1606, 2007.
[6]
Y. Wei and Y. Liu, “Effects of sewage sludge compost application on crops and cropland in a 3-year field study,” Chemosphere, vol. 59, no. 9, pp. 1257–1265, 2005.
[7]
P. S. Kidd, M. J. Domínguez-Rodríguez, J. Díez, and C. Monterroso, “Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge,” Chemosphere, vol. 66, no. 8, pp. 1458–1467, 2007.
[8]
F. Pardo, M. M. Jordán, T. Sanfeliu, and S. Pina, “Distribution of Cd, Ni, Cr, and Pb in amended soils from alicante province (SE, Spain),” Water, Air, and Soil Pollution, vol. 217, no. 1–4, pp. 535–543, 2011.
[9]
Z. L. He, X. E. Yang, and P. J. Stoffella, “Trace elements in agroecosystems and impacts on the environment,” Journal of Trace Elements in Medicine and Biology, vol. 19, no. 2-3, pp. 125–140, 2005.
[10]
T. Horváth, V. Szilágyi, and Z. Hartyáni, “Characterization of trace element distributions in soils,” Microchemical Journal, vol. 67, no. 1-3, pp. 53–56, 2000.
[11]
A. Battaglia, N. Calace, E. Nardi, B. M. Petronio, and M. Pietroletti, “Reduction of Pb and Zn bioavailable forms in metal polluted soils due to paper mill sludge addition. Effects on Pb and Zn transferability to barley,” Bioresource Technology, vol. 98, no. 16, pp. 2993–2999, 2007.
[12]
B. F. Sukkariyah, G. Evanylo, L. Zelazny, and R. L. Chaney, “Recovery and distribution of biosolids-derived trace metals in a clay loam soil,” Journal of Environmental Quality, vol. 34, no. 5, pp. 1843–1850, 2005.
[13]
M. B. McBride, B. K. Richards, T. Steenhuis, J. J. Russo, and S. Sauvé, “Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application,” Soil Science, vol. 162, no. 7, pp. 487–500, 1997.
[14]
B. K. Richards, T. S. Steenhuis, J. H. Peverly, and M. B. McBride, “Metal mobility at an old, heavily loaded sludge application site,” Environmental Pollution, vol. 99, no. 3, pp. 365–377, 1998.
[15]
D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, Springer, New York, NY, USA, 2nd edition, 2001.
[16]
J. Su, H. Wang, M. O. Kimberley, K. Beecroft, G. N. Magesan, and C. Hu, “Distribution of heavy metals in a sandy forest soil repeatedly amended with biosolids,” Australian Journal of Soil Research, vol. 46, no. 6-7, pp. 502–508, 2008.
[17]
M. A. Al-Wabel, D. M. Heil, D. G. Westfall, and K. A. Barbarick, “Solution chemistry influence on metal mobility in biosolids-amended soils,” Journal of Environmental Quality, vol. 31, no. 4, pp. 1157–1165, 2002.
[18]
D. Grolimund, M. Borkovec, K. Barmettler, and H. Sticher, “Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study,” Environmental Science and Technology, vol. 30, no. 10, pp. 3118–3123, 1996.
[19]
M. B. McBride, “Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective?” Journal of Environmental Quality, vol. 24, no. 1, pp. 5–18, 1995.
[20]
K. Reynolds, R. Kruger, N. Rethman, and W. Truter, “The production of an artificial soil from sewage sludge and fly-ash and the subsequent evaluation of growth enhancement, heavy metal translocation and leaching potential,” Water SA, vol. 28, pp. 73–77, 2002.
[21]
S. P. McGrath and P. J. Loveland, The Soil Geochemical Atlas of England and Wales, Blackie Academic & Professional, London, UK, 1992.
[22]
B. K. Richards, T. S. Steenhuis, J. H. Peverly, and M. B. McBride, “Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading,” Environmental Pollution, vol. 109, no. 2, pp. 327–346, 2000.
[23]
G. Egiarte, M. Camps Arbestain, E. Ruíz-Romera, and M. Pinto, “Study of the chemistry of an acid soil column and of the corresponding leachates after the addition of an anaerobic municipal sludge,” Chemosphere, vol. 65, no. 11, pp. 2456–2467, 2006.
[24]
J. Wu, D. A. Laird, and M. L. Thompson, “Sorption and desorption of copper on soil clay components,” Journal of Environmental Quality, vol. 28, no. 1, pp. 334–338, 1999.
[25]
V. Antoniadis, C. D. Tsadilas, and D. J. Ashworth, “Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil,” Chemosphere, vol. 68, no. 3, pp. 489–494, 2007.
[26]
G. Gascó, M. C. Lobo, and F. Guerrero, “Land application of sewage sludge: a soil columns study,” Water SA, vol. 31, no. 3, pp. 309–318, 2005.
[27]
E. L. Aksakal, I. Angin, and T. Oztas, “Effects of diatomite on soil physical properties,” Catena, vol. 88, no. 1, pp. 1–5, 2012.
[28]
C. M. Brenton, E. B. Fish, and R. Mata-González, “Macronutrient and trace element leaching following biosolids application on semi-arid rangeland soils,” Arid Land Research and Management, vol. 21, no. 2, pp. 143–156, 2007.
[29]
S. Sauvé, M. B. McBride, W. A. Norvell, and W. H. Hendershot, “Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter,” Water, Air, and Soil Pollution, vol. 100, no. 1-2, pp. 133–149, 1997.
[30]
M. B. McBride, B. K. Richards, and T. Steenhuis, “Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products,” Plant and Soil, vol. 262, no. 1-2, pp. 71–84, 2004.
[31]
R. Stehouwer, R. L. Day, and K. E. Macneal, “Nutrient and trace element leaching following mine reclamation with biosolids,” Journal of Environmental Quality, vol. 35, no. 4, pp. 1118–1126, 2006.
[32]
B. J. Alloway, “Soil processes and the behaviour of metals,” in Heavy Metals in Soils, B. J. Alloway, Ed., pp. 38–57, Blackie Academic & Professional, London, UK, 1995.
[33]
A. Violante, V. Cozzolino, L. Perelomov, A. G. Caporale, and M. Pigna, “Mobility and bioavailability of heavy metals and metalloids in soil environments,” Journal of Soil Science and Plant Nutrition, vol. 10, no. 3, pp. 268–292, 2010.
[34]
L. Bochatay, P. Persson, L. Lovgren, and G. E. Brown Jr., “XAFS study of Cu(II) at the water-goethite (α-FeOOH) interface,” Journal de Physique IV, vol. 7, pp. 819–820, 1997.
[35]
W. F. Jaynes and R. E. Zartman, “Origin of talc, iron phosphates, and other minerals in biosolids,” Soil Science Society of America Journal, vol. 69, no. 4, pp. 1047–1056, 2005.
[36]
C. D. Tsadilas, T. Matsi, N. Barbayiannis, and D. Dimoyiannis, “Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions,” Communications in Soil Science and Plant Analysis, vol. 15-16, pp. 2603–2619, 1995.
[37]
R. G. Ford, P. M. Bertsch, and K. J. Farley, “Changes in transition and heavy metal partitioning during hydrous iron oxide aging,” Environmental Science and Technology, vol. 31, no. 7, pp. 2028–2033, 1997.
[38]
U. Schwertmann, P. Cambier, and E. Murad, “Properties of goethites of varying crystallinity.,” Clays & Clay Minerals, vol. 33, no. 5, pp. 369–378, 1985.
[39]
S. Torri, “Feasibility of using a mixture of sewage sludge and incinerated sewage sludge as a soil amendment,” in Sludge: Types, Treatment Processes and Disposal, R. E. Baily, Ed., pp. 187–208, Nova Science, Hauppauge, NY, USA, 2009.
[40]
C. D. Tsadilas, “Soil pH effect on the distribution of heavy metals among soil fractions,” in Environmental Restoration of Metal Contaminated Soils, A. Iskandar, Ed., pp. 107–119, Lewis, 2001.
[41]
J. H. Hsu and S. L. Lo, “Characterization and extractability of copper, manganese, and zinc in swine manure composts,” Journal of Environmental Quality, vol. 29, no. 2, pp. 447–453, 2000.
[42]
L. M. Shuman, “Chemical forms of micronutrients in soils,” in Micronutrients in Agriculture, chapter 5., pp. 113–144, Soil Science Society of America, Madison, Wis, USA, 2nd edition, 1991.
[43]
D. J. Ashworth and B. J. Alloway, “Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc,” Environmental Pollution, vol. 127, no. 1, pp. 137–144, 2004.
[44]
N. T. Basta and J. J. Sloan, “Bioavailablility of heavy metals in strongly acidic soils treated with exceptional quality biosolids,” Journal of Environmental Quality, vol. 28, no. 2, pp. 633–638, 1999.
[45]
B. J. Alloway, “Soil factors associated with zinc deficiency in crops and humans,” Environmental Geochemistry and Health, vol. 31, no. 5, pp. 537–548, 2009.
[46]
M. Toribio and J. Romanyà, “Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils,” Science of the Total Environment, vol. 363, no. 1–3, pp. 11–21, 2006.
[47]
J. Pichtel and D. J. Bradway, “Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site,” Bioresource Technology, vol. 99, no. 5, pp. 1242–1251, 2008.
[48]
J. Kumpiene, A. Lagerkvist, and C. Maurice, “Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review,” Waste Management, vol. 28, no. 1, pp. 215–225, 2008.
[49]
R. B. Corey, L. D. King, C. Lue-Hing, D. S. Fanning, U. Street, and J. M. Walker, “Effects of sludge properties on accumulation of trace elements by crops,” in Land Application of Sludge, A. L. Page, T. Logan, and J. A. Ryan, Eds., Lewis, Chelsea, Mich, USA, 1987.
[50]
D. J. Ashworth and B. J. Alloway, “Influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils,” Communications in Soil Science and Plant Analysis, vol. 39, no. 3-4, pp. 538–550, 2008.
[51]
K. Fischer, “Removal of heavy metals from soil components and soil by natural chelating agents—part I: displacement from clay minerals and peat by L-cysteine and L-penicillamine,” Water, Air, and Soil Pollution, vol. 137, no. 1—4, pp. 267–286, 2002.
[52]
A. Traversa, V. D'Orazio, and N. Senesi, “Properties of dissolved organic matter in forest soils: influence of different plant covering,” Forest Ecology and Management, vol. 256, no. 12, pp. 2018–2028, 2008.
[53]
R. Zbytniewski and B. Buszewski, “Characterization of natural organic matter (NOM) derived from sewage sludge compost—part 1: chemical and spectroscopic properties,” Bioresource Technology, vol. 96, no. 4, pp. 471–478, 2005.
[54]
D. L. Sparks, Environmental Soil Chemistry, Academic Press, San Diego, Calif, USA, 2nd edition, 2003.
[55]
T. A. Jackson, “The biochemical and ecological significance of interactions between colloidal minerals and trace elements,” in Environmental Interactions of Clays, A. Parker and J. E. Rae, Eds., pp. 93–205, Springer, Berlin, Germany, 1998.
[56]
F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, Wiley, New York, NY, USA, 1994.
[57]
L. M. Neto, O. R. Nascimento, J. Talamoni, and N. R. Poppi, “EPR of micronutrients-humic substances complexes extracted from a Brazilian soil,” Soil Science, vol. 151, no. 5, pp. 369–376, 1991.
[58]
M. L. Azevedo-Silveira, L. R. Ferraciú-Alleoni, and L. R. Guimar?es-Guilherme, “Biosolids and heavy metals in soils,” Scientia Agricola, vol. 60, pp. 793–806, 2003.
[59]
S. Torri, R. Alvarez, and R. Lavado, “Mineralization of carbon from sewage sludge in three soils of the Argentine pampas,” Communications in Soil Science and Plant Analysis, vol. 34, no. 13-14, pp. 2035–2043, 2003.
[60]
A. Kaschl, V. R?mheld, and Y. Chen, “Binding of cadmium, copper and zinc tohumic substances originating from municipal solid waste compost,” Journal of Environmental Quality, vol. 31, pp. 1885–1892, 2002.
[61]
L. J. Lund, A. L. Page, and C. O. Nelson, “Movement of heavy metals below sewage disposal ponds,” Journal of Environmental Quality, vol. 5, no. 3, pp. 330–334, 1976.
[62]
P. J. van Erp and P. van Lune, “Long-term heavy-metal leaching from soils, sewage sludge and soil/sewage sludge mixtures,” in Treatment and Use of Sewage Sludge and Liquid Agricultural Wastes, P. L. Hermite, Ed., pp. 122–127, Elsevier, New York, NY, USA, 1991.
[63]
L. Kiekens, “Behavior of heavy metals in soils,” in Utilization of Sewage Sludge on Land: Rates of Application and Long-Term Effects of Metals, S. Berglund, R. D. Davis, and P. L'Hermite, Eds., D. Reidel Publishing, Dordrecht, The Netherlands, 1983.
[64]
M. E. Essington, Soil and Water Chemistry: An Integrative Approach, CRC Press, Boca Raton, Fla, USA, 2004.
[65]
J. Wang, C. P. Huang, and H. E. Allen, “Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter,” Water Research, vol. 37, no. 20, pp. 4835–4842, 2003.
[66]
T. S. Steenhuis, J. Y. Parlange, and S. A. Aburime, “Preferential flow in structured and sandy soils: consequences for modeling and monitoring,” in Handbook of Vadose Zone Characterization and Monitoring, L. Everett, S. Cullen, and L. Wilson, Eds., pp. 61–77, Lewis, Chelsea, Mich, USA, 1995.
[67]
M. B. McBride, B. K. Richards, T. Steenhuis, and G. Spiers, “Long-term leaching of trace elements in a heavily sludge-amended silly clay loam soil,” Soil Science, vol. 164, no. 9, pp. 613–623, 1999.
[68]
C. Keller, S. P. McGrath, and S. J. Dunham, “Trace metal leaching through a soil-grassland system after sewage sludge application,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1550–1560, 2002.
[69]
R. J. Haynes, G. Murtaza, and R. Naidu, “Inorganic and organic constituents and contaminants of biosolids. Implications for land application,” Advances in Agronomy, vol. 104, pp. 165–267, 2009.
[70]
D. Businelli, L. Massaccesi, D. Said-Pullicino, and G. Gigliotti, “Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil,” Science of the Total Environment, vol. 407, no. 4, pp. 1426–1435, 2009.
[71]
M. J. Christ and M. B. David, “Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol,” Soil Biology and Biochemistry, vol. 28, no. 9, pp. 1191–1199, 1996.
[72]
N. Z. Han and M. L. Thompson, “Soluble organic carbon in a biosolids-amended mollisol,” Journal of Environmental Quality, vol. 28, no. 2, pp. 652–658, 1999.
[73]
V. Antoniadis and B. J. Alloway, “The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils,” Environmental Pollution, vol. 117, no. 3, pp. 515–521, 2002.
[74]
B. W. Strobel, H. C. B. Hansen, O. K. Borggaard, M. K. Andersen, and K. Raulund-Rasmussen, “Cadmium and copper release kinetics in relation to afforestation of cultivated soil,” Geochimica et Cosmochimica Acta, vol. 65, no. 8, pp. 1233–1242, 2001.
[75]
N. S. Bolan, D. C. Adriano, and S. Mahimairaja, “Distribution and bioavailability of trace elements in livestock and poultry manure by-products,” Critical Reviews in Environmental Science and Technology, vol. 34, no. 3, pp. 291–338, 2004.
[76]
N. T. Basta, R. Gradwohl, K. L. Snethen, and J. L. Schroder, “Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate,” Journal of Environmental Quality, vol. 30, no. 4, pp. 1222–1230, 2001.