Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories
The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil, EPA method 418.1, is usually based on extraction with 1,1,2-trichlorotrifluoroethane (Freon 113) and FTIR spectroscopy of the extracted solvent. This method is widely used for initial site investigation, due to the relative low price per sample. It is known that the extraction efficiency varies depending on the extracting solvent and other sample properties. This study’s main goal was to evaluate reflectance spectroscopy as a tool for TPH assessment, as compared with three commercial certified laboratories using traditional methods. Large variations were found between the results of the three commercial laboratories, both internally (average deviation up to 20%), and between laboratories (average deviation up to 103%). Reflectance spectroscopy method was found be as good as the commercial laboratories in terms of accuracy and could be a viable field-screening tool that is rapid, environmental friendly, and cost effective. 1. Introduction Among the chemicals that are relevant as environmental contaminants, petroleum hydrocarbons (PHC) are of particular significance. The widespread use of PHC for transportation, heating and industry has led to the release of these petroleum products into the environment through accidental spills, long-term leakage, or operational failures. Consequently, many soil and water areas are contaminated with PHC. PHC are well known to be neurotoxic to humans and animals. Several studies have been conducted in order to verify the effects of PHC on humans and animals [1–3]. For both the diagnosis of suspected areas and the possibility of controlling the rehabilitation process, there is a great need to measure correctly the amounts of PHC in soils. Total petroleum hydrocarbons (TPH) is a commonly used gross parameter for quantifying environmental contamination originated by various PHC products such as fuels, oils, lubricants, waxes, and others [4]. Traditional wet chemistry methods for determining TPH level in soil samples is based on extracting the contaminant from the soil sample. The TPH level in the extracted solution is then determined by a gravimetric, FTIR, or GC measurement calibrated by an EPA calibration standard. The TPH gross parameter is in use worldwide and facilitates an important stage of contaminated sites investigation; therefore, it is important to examine the effects of hydrocarbon type and soil properties on the extraction efficiency, as well as cross-lab repeatability. The common method for assessing TPH in soil samples
References
[1]
M. S. Hutcheson, D. Pedersen, N. D. Anastas, J. Fitzgerald, and D. Silverman, “Beyond TPH: health-based evaluation of petroleum hydrocarbon exposures,” Regulatory Toxicology and Pharmacology, vol. 24, no. 1, pp. 85–101, 1996.
[2]
P. Boffetta, N. Jourenkova, and P. Gustavsson, “Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons,” Cancer Causes and Control, vol. 8, no. 3, pp. 444–472, 1997.
[3]
G. D. Ritchie, K. R. Still, W. K. Alexander et al., “A review of the neurotoxicity risk of selected hydrocarbon fuels,” Journal of Toxicology and Environmental Health B, vol. 4, no. 3, pp. 223–312, 2001.
[4]
Environmental Sciences Division, Use of Gross Parameters for Assessment of Hydrocarbon Contamination of Soils in Alberta, Oxford, UK, 1993.
[5]
United States Environmental Protection Agency (USEPA), Test Method for Evaluating Total Recoverable Petroleum Hydrocarbon, Method 418.1 (Spectrophotometric, Infrared), Government Printing Office, Washington, DC, USA, 1978.
[6]
United States Environmental Protection Agency (USEPA), Methods for Chemical Analysis of Water and Wastes, Government Printing Office, Washington, DC, USA, 1983.
[7]
G. Schwartz, G. Eshel, and E. Ben-Dor, “Reflectance spectroscopy as a tool for monitoring contaminated soils,” in Soil Contamination, Intech, 2011.
[8]
R. S. G. Gómez, T. Pandiyan, V. E. A. Iris, V. Luna-Pabello, and C. D. de Bazúa, “Spectroscopic determination of poly-aromatic compounds in petroleum contaminated soils,” Water, Air, and Soil Pollution, vol. 158, no. 1, pp. 137–151, 2004.
[9]
J. Krupcík, P. Oswald, D. Oktavec, and D. W. Armstrong, “Calibration of GC-FID and IR spectrometric methods for determination of high boiling petroleum hydrocarbons in environmental samples,” Water, Air, and Soil Pollution, vol. 153, no. 1–4, pp. 329–341, 2004.
[10]
G. Xie, M. J. Barcelona, and J. Fang, “Quantification and interpretation of total petroleum hydrocarbons in sediment samples by a GC/MS method and comparison with EPA 418.1 and a rapid field method,” Analytical Chemistry, vol. 71, no. 9, pp. 1899–1904, 1999.
[11]
P. Lambert, M. Fingas, and M. Goldthorp, “An evaluation of field total petroleum hydrocarbon (TPH) systems,” Journal of Hazardous Materials, vol. 83, no. 1-2, pp. 65–81, 2001.
[12]
E. Saari, P. Per?m?ki, and J. Jalonen, “A comparative study of solvent extraction of total petroleum hydrocarbons in soil,” Microchimica Acta, vol. 158, no. 3-4, pp. 261–268, 2007.
[13]
M. Villalobos, A. P. Avila-Forcada, and M. E. Gutierrez-Ruiz, “An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils,” Water, Air, and Soil Pollution, vol. 194, no. 1–4, pp. 151–161, 2008.
[14]
E. A. Cloutis, “Spectral reflectance properties of hydrocarbons: remote-sensing implications,” Science, vol. 245, no. 4914, pp. 165–168, 1989.
[15]
I. Schneider, G. Nau, T. V. V. King, and I. Aggarwal, “Fiber-optic near-infrared reflectance sensor for detection of organics in soils,” IEEE Photonics Technology Letters, vol. 7, no. 1, pp. 87–89, 1995.
[16]
B. R. Stallard, M. J. Garcia, and S. Kaushik, “Near-IR reflectance spectroscopy for the determination of motor oil contamination in sandy loam,” Applied Spectroscopy, vol. 50, no. 3, pp. 334–338, 1996.
[17]
Z. Zwanziger and F. Heidrun, “Near infrared spectroscopy of fuel contaminated sand and soil. I. Preliminary results and calibration study,” Journal of Near Infrared Spectroscopy, vol. 6, no. 1–4, pp. 189–197, 1998.
[18]
D. F. Malley, K. N. Hunter, and G. R. B. Webster, “Analysis of diesel fuel contamination in soils by near-infrared reflectance spectrometry and solid phase microextraction-gas chromatography,” Soil and Sediment Contamination, vol. 8, no. 4, pp. 481–489, 1999.
[19]
B. H?rig, F. Kühn, F. Oschütz, and F. Lehmann, “HyMap hyperspectral remote sensing to detect hydrocarbons,” International Journal of Remote Sensing, vol. 22, no. 8, pp. 1413–1422, 2001.
[20]
F. Kühn, K. Oppermann, and B. H?rig, “Hydrocarbon index—an algorithm for hyperspectral detection of hydrocarbons,” International Journal of Remote Sensing, vol. 25, no. 12, pp. 2467–2473, 2004.
[21]
K. H. Winkelmann, On the applicability of imaging spectrometry for the detection and investigation of contaminated sites with particular consideration given to the detection of fuel hydrocarbon contaminants in soil, Ph.D. thesis, Brandenburgische Technische Universit?t Cottbus, 2005.
[22]
G. Schwartz, G. Eshel, M. Ben-Haim, and E. Ben-Dor, “Rapid methods for classification and quantitative assessment of petroleum hydrocarbons pollution in soil samples using reflectance spectroscopy,” EGU 2009-11441-2, Vienna, Austria, 2009.
[23]
S. Chakraborty, D. C. Weindorf, C. L. S. Morgan et al., “Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy,” Journal of Environmental Quality, vol. 39, no. 4, pp. 1378–1387, 2010.
[24]
T. Lammoglia and C. R. de S. Filho, “Spectroscopic characterization of oils yielded from Brazilian offshore basins: potential applications of remote sensing,” Remote Sensing of Environment, vol. 115, no. 10, pp. 2525–2535, 2011.
[25]
J. Dan and H. Koyumdjisky, “The soils of israel and their distribution,” European Journal of Soil Science, vol. 14, no. 1, pp. 12–20, 1963.
[26]
S. S. Staff, Keys to Soil Taxonomy, Government Printing Office, 2010.
[27]
D. L. Carter, M. M. Mortland, and W. D. Kemper, “Specific surface,” in Methods of Soil Analysis Part I. Soil Science, A. Klute, Ed., pp. 413–422, Society of America, Madison, Wis, USA, 1986.
[28]
G. Eshel, G. J. Levy, U. Mingelgrin, and M. J. Singer, “Critical evaluation of the use of laser diffraction for particle-size distribution analysis,” Soil Science Society of America Journal, vol. 68, no. 3, pp. 736–743, 2004.
[29]
A. Pimstein, E. Ben-Dor, and G. Notesco, “Performance of three identical spectrometers in retrieving soil reflectance under laboratory conditions,” Soil Science Society of America Journal, vol. 75, no. 2, pp. 746–759, 2011.
[30]
G. Schwartz, G. Eshel, M. Ben-Haim, and E. Ben-Dor, Reflectance Spectroscopy as a Rapid Tool for Qualitative Mapping and Classification of Hydrocarbons Soil Contamination, Tel Aviv, Israel, 2009.
[31]
G. Schwartz, G. Eshel, M. Ben-Haim, and E. Ben-Dor, Quantitative Assessment of Petroleum Hydrocarbons in Situ by Diffused Reflectance Spectroscopy and a Penetrating Optical Sensor, GFZ, Potsdam, Germany, 2010.
[32]
G. Schwartz, G. Eshel, and E. Ben-Dor, An Operational Spectral Based Model to Predict Soil Petroleum Hydrocarbon Content in Field Samples, Edinburgh, Scotland, 2011.
[33]
G. Schwartz, Reflectance spectroscopy as a rapid tool for qualitative mapping and classification of hydrocarbons soil contamination, Ph.D. thesis, Tel Aviv University, 2012.