全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cytolethal Distending Toxin: A Unique Variation on the AB Toxin Paradigm

DOI: 10.1155/2014/249056

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted. 1. Introduction Bacteria secrete a myriad of different types of proteins that exhibit a cell damaging or “cytotoxic” activity. Examples include but are not limited to membrane-damaging proteins such as RTX (repeats in toxin) and CDC (cholesterol-dependent cytolysins), cell surface interacting proteins such as ST (heat-stable enterotoxins), and superantigens, as well as other proteins that attack cytosolic activities. One of the recurring organizational themes among secreted bacterial protein toxins that target intracellular processes in mammalian cells is a complex composed of at least two heterogeneous polypeptide chains or subunits. Each chain makes a distinct contribution to cell intoxication or toxic activity. The superfamily of cytotoxins that exhibit this structural arrangement have been generally labeled as the AB toxins [1]. In this arrangement, the A chain or subunit typically functions as an enzyme that disrupts a specific cell process or pathway and the B chain or subunit, in monomeric or polymeric form, and promotes binding of the holotoxin to the target cell surface. The newest member of the AB toxin superfamily, discovered by Johnson and Lior in 1987 [2], is the cytolethal distending toxin (Cdt). This toxin was named so because Chinese hamster ovary (CHO) cells became stretched or enlarged when exposed to cell-free filtrates of enteropathogenic Escherichia coli (EPEC) isolated from young children diagnosed with gastroenteritis. Nucleotide sequences of the E. coli cdt genes were first reported in 1994 by Pickett et al. [3] and Scott and Kaper [4] and revealed that the toxin was composed of three heterogenous subunits (CdtA, CdtB, and CdtC). Publication of this sequence led to the rapid discovery of a family that represents a

References

[1]  O. Odumosu, D. Nicholas, H. Yano, and W. Langridge, “AB toxins: a paradigm switch from deadly to desirable,” Toxins, vol. 2, no. 7, pp. 1612–1645, 2010.
[2]  W. M. Johnson and H. Lior, “Response of Chinese hamster ovary cells to a cytolethal distending toxin (CDT) of Escherichia coli and possible misinterpretation as heat-labile (LT) enterotoxin,” FEMS Microbiology Letters, vol. 43, no. 1, pp. 19–23, 1987.
[3]  C. L. Pickett, D. L. Cottle, E. C. Pesci, and G. Bikah, “Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes,” Infection and Immunity, vol. 62, no. 3, pp. 1046–1051, 1994.
[4]  D. A. Scott and J. B. Kaper, “Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin,” Infection and Immunity, vol. 62, no. 1, pp. 244–251, 1994.
[5]  N. N?rskov-Lauritsen and M. Kilian, “Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 9, pp. 2135–2146, 2006.
[6]  N. A. Moran, P. H. Degnan, S. R. Santos, H. E. Dunbar, and H. Ochman, “The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 47, pp. 16919–16926, 2005.
[7]  S. Y. Pérès, O. Marchès, F. Daigle et al., “A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase,” Molecular Microbiology, vol. 24, no. 5, pp. 1095–1107, 1997.
[8]  J. M. Lord, L. M. Roberts, and J. D. Robertus, “Ricin: structure, mode of action, and some current applications,” The FASEB Journal, vol. 8, no. 2, pp. 201–208, 1994.
[9]  S. Olsnes and J. V. Kozlov, “Ricin,” Toxicon, vol. 39, no. 11, pp. 1723–1728, 2001.
[10]  E. Rutenber, M. Ready, and J. D. Robertus, “Structure and evolution of ricin B chain,” Nature, vol. 326, no. 6113, pp. 624–626, 1987.
[11]  E. C. Sweeney, A. G. Tonevitsky, R. A. Palmer et al., “Mistletoe lectin I forms a double trefoil structure,” FEBS Letters, vol. 431, no. 3, pp. 367–370, 1998.
[12]  P. J. Hart, A. F. Monzingo, A. Donohue-Rolfe, G. T. Keusch, S. B. Calderwood, and J. D. Robertus, “Crystallization of the B chain of Shiga-like toxin I from Escherichia coli,” Journal of Molecular Biology, vol. 218, no. 4, pp. 691–694, 1991.
[13]  A. A. Lindberg, J. E. Brown, N. Str?mberg, M. Westling-Ryd, J. E. Schultz, and K. A. Karlsson, “Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1,” The Journal of Biological Chemistry, vol. 262, no. 4, pp. 1779–1785, 1987.
[14]  S. Schüller, “Shiga toxin interaction with human intestinal epithelium,” Toxins, vol. 3, no. 6, pp. 626–639, 2011.
[15]  P. Ascenzi, P. Visca, G. Ippolito, A. Spallarossa, M. Bolognesi, and C. Montecucco, “Anthrax toxin: a tripartite lethal combination,” FEBS Letters, vol. 531, no. 3, pp. 384–388, 2002.
[16]  D. B. Lacy and R. J. Collier, “Structure and function of anthrax toxin,” Current Topics in Microbiology and Immunology, vol. 271, pp. 61–85, 2002.
[17]  K. L. May, Q. Yan, and N. E. Tumer, “Targeting ricin to the ribosome,” Toxicon, vol. 69, pp. 143–151, 2013.
[18]  D. Vanden Broeck, C. Horvath, and M. J. S. de Wolf, “Vibrio cholerae: cholera toxin,” International Journal of Biochemistry & Cell Biology, vol. 39, no. 10, pp. 1771–1775, 2007.
[19]  A. Wheeler and H. S. Smith, “Botulinum toxins: mechanisms of action, antinociception and clinical applications,” Toxicology, vol. 306, pp. 124–146, 2013.
[20]  B. Bizzini, “Tetanus toxin,” Microbiological Reviews, vol. 43, no. 2, pp. 224–240, 1979.
[21]  X. Cortes-Bratti, E. Chaves-Olarte, T. Lagerg?rd, and M. Thelestam, “Cellular internalization of cytolethal distending toxin from Haemophilus ducreyi,” Infection and Immunity, vol. 68, no. 12, pp. 6903–6911, 2000.
[22]  I. Tóth, F. Hérault, L. Beutin, and E. Oswald, “Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (type IV),” Journal of Clinical Microbiology, vol. 41, no. 9, pp. 4285–4291, 2003.
[23]  I. Tóth, J.-P. Nougayrède, U. Dobrindt et al., “Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli,” Infection and Immunity, vol. 77, no. 1, pp. 492–500, 2009.
[24]  A. Allue-Guardia, L. Imamovic, and M. Muniesa, “Evolution of a self-inducible cytolethal distending toxin type V-encoding bacteriophage from Escherichia coli O157:H7 to Shigella sonnei,” Journal of Virology, vol. 87, no. 24, pp. 13665–13675, 2013.
[25]  M. Asakura, A. Hinenoya, M. S. Alam et al., “An inducible lambdoid prophage encoding cytolethal distending toxin (Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 36, pp. 14483–14488, 2007.
[26]  A. Shima, A. Hinenoya, M. Asakura et al., “Molecular characterizations of cytolethal distending toxin produced by Providencia alcalifaciens strains isolated from patients with diarrhea,” Infection and Immunity, vol. 80, no. 4, pp. 1323–1332, 2012.
[27]  S. Doungudomdacha, A. Volgina, and J. M. DiRienzo, “Evidence that the cytolethal distending toxin locus was once part of a genomic island in the periodontal pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans strain Y4,” Journal of Medical Microbiology, vol. 56, no. 11, pp. 1519–1527, 2007.
[28]  W. Kittichotirat, R. E. Bumgarner, S. Asikainen, and C. Chen, “Identification of the pangenome and its components in 14 distinct aggregatibacter actinomycetemcomitans strains by comparative genomic analysis,” PLoS ONE, vol. 6, no. 7, Article ID e22420, 2011.
[29]  M. P. A. Mayer, L. C. Bueno, E. J. Hansen, and J. M. Dirienzo, “Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans,” Infection and Immunity, vol. 67, no. 3, pp. 1227–1237, 1999.
[30]  L. D. Cope, S. Lumbley, J. L. Latimer et al., “A diffusible cytotoxin of Haemophilus ducreyi,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 4056–4061, 1997.
[31]  S. C. Kachlany, P. J. Planet, M. K. Bhattacharjee et al., “Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in Bacteria and Archaea,” Journal of Bacteriology, vol. 182, no. 21, pp. 6169–6176, 2000.
[32]  A. Mira, H. Ochman, and N. A. Moran, “Deletional bias and the evolution of bacterial genomes,” Trends in Genetics, vol. 17, no. 10, pp. 589–596, 2001.
[33]  A. I. Nilsson, S. Koskiniemi, S. Eriksson, E. Kugelberg, J. C. D. Hinton, and D. I. Andersson, “Bacterial genome size reduction by experimental evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12112–12116, 2005.
[34]  H. Ochman, “Lateral and oblique gene transfer,” Current Opinion in Genetics and Development, vol. 11, no. 6, pp. 616–619, 2001.
[35]  E. P. C. Rocha, “Order and disorder in bacterial genomes,” Current Opinion in Microbiology, vol. 7, no. 5, pp. 519–527, 2004.
[36]  J. G. Lawrence, “Horizontal and vertical gene transfer: the life history of pathogens,” Contributions to Microbiology, vol. 12, pp. 255–271, 2005.
[37]  J. G. Lawrence and H. Hendrickson, “Genome evolution in bacteria: order beneath chaos,” Current Opinion in Microbiology, vol. 8, no. 5, pp. 572–578, 2005.
[38]  S. Akifusa, S. Poole, J. Lewthwaite, B. Henderson, and S. P. Nair, “Recombinant Actinobacillus actinomycetemcomitans cytolethal distending toxin proteins are required to interact to inhibit human cell cycle progression and to stimulate human leukocyte cytokine synthesis,” Infection and Immunity, vol. 69, no. 9, pp. 5925–5930, 2001.
[39]  X. Mao and J. M. DiRienzo, “Functional studies of the recombinant subunits of a cytolethal distending holotoxin,” Cellular Microbiology, vol. 4, no. 4, pp. 245–255, 2002.
[40]  K. Saiki, K. Konishi, T. Gomi, T. Nishihara, and M. Yoshikawa, “Reconstitution and purification of cytolethal distending toxin of Actinobacillus actinomycetemcomitans,” Microbiology and Immunology, vol. 45, no. 6, pp. 497–506, 2001.
[41]  B. J. Shenker, R. H. Hoffmaster, T. L. McKay, and D. R. Demuth, “Expression of the cytolethal distending toxin (Cdt) operon in Actinobacillus actinomycetemcomitans: evidence that the cdtb protein is responsible for G2 arrest of the cell cycle in human T cells,” Journal of Immunology, vol. 165, no. 5, pp. 2612–2618, 2000.
[42]  S. T. Kai, G. Ong, and P. S. Keang, “Introns in the cytolethal distending toxin gene of Actinobacillus actinomycetemcomitans,” Journal of Bacteriology, vol. 187, no. 2, pp. 567–575, 2005.
[43]  P. L. Longo, A. C. R. Nunes, J. E. Umeda, and M. P. A. Mayer, “Gene expression and phenotypic traits of Aggregatibacter actinomycetemcomitans in response to environmental changes,” Journal of Periodontal Research, vol. 48, no. 6, pp. 766–772, 2013.
[44]  E. M. Haase, T. Bonstein, R. J. Palmer Jr., and F. A. Scannapieco, “Environmental influences on Actinobacillus actinomycetemcomitans biofilm formation,” Archives of Oral Biology, vol. 51, no. 4, pp. 299–314, 2006.
[45]  J. H. Park, J. K. Lee, H. S. Um, B. S. Chang, and S. Y. Lee, “A periodontitis-associated multispecies model of an oral biofilm,” Journal of Periodontal Implant Science, vol. 44, no. 2, pp. 79–84, 2014.
[46]  E. Haghjoo and J. E. Galán, “Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4614–4619, 2004.
[47]  C.-C. Chien, N. S. Taylor, Z. Ge, D. B. Schauer, V. B. Young, and J. G. Fox, “Identification of cdtB homologues and cytolethal distending toxin activity in enterohepatic Helicobacter spp,” Journal of Medical Microbiology, vol. 49, no. 6, pp. 525–534, 2000.
[48]  X. Hu, D. Nesic, and C. E. Stebbins, “Comparative structure-function analysis of cytolethal distending toxins,” Proteins, vol. 62, no. 2, pp. 421–434, 2006.
[49]  I. Kursula and R. K. Wierenga, “Crystal structure of triosephosphate isomerase complexed with 2-phosphoglycolate at 0.83-? resolution,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 9544–9551, 2003.
[50]  L. M. F. Merlo, M. Lunzer, and A. M. Dean, “An empirical test of the concomitantly variable codon hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 26, pp. 10938–10943, 2007.
[51]  L. Cao, A. Volgina, J. Korostoff, and J. M. DiRienzo, “Role of intrachain disulfides in the activities of the CdtA and CdtC subunits of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans,” Infection and Immunity, vol. 74, no. 9, pp. 4990–5002, 2006.
[52]  D. Ne?i?, Y. Hsu, and C. E. Stebbins, “Assembly and function of a bacterial genotoxin,” Nature, vol. 429, no. 6990, pp. 429–433, 2004.
[53]  T. Yamada, J. Komoto, K. Saiki, K. Konishi, and F. Takusagawa, “Variation of loop sequence alters stability of cytolethal distending toxin (CDT): crystal structure of CDT from Actinobacillus actinomycetemcomitans,” Protein Science, vol. 15, no. 2, pp. 362–372, 2006.
[54]  M. Lara-Tejero and J. E. Galán, “CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity,” Infection and Immunity, vol. 69, no. 7, pp. 4358–4365, 2001.
[55]  L. A. McSweeney and L. A. Dreyfus, “Carbohydrate-binding specificity of the Escherichia coli cytolethal distending toxin CdtA-II and CdtC-II subunits,” Infection and Immunity, vol. 73, no. 4, pp. 2051–2060, 2005.
[56]  L. Cao, A. Volgina, C.-M. Huang, J. Korostoff, and J. M. DiRienzo, “Characterization of point mutations in the cdtA gene of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans,” Molecular Microbiology, vol. 58, no. 5, pp. 1303–1321, 2005.
[57]  P. Stanley, “Glycosylation mutants of animal cells.,” Annual Review of Genetics, vol. 18, pp. 525–552, 1984.
[58]  A. Eshraghi, F. J. Maldonado-Arocho, A. Gargi et al., “Cytolethal distending toxin family members are differentially affected by alterations in host glycans and membrane cholesterol,” The Journal of Biological Chemistry, vol. 285, no. 24, pp. 18199–18207, 2010.
[59]  L. Cao, G. Bandelac, A. Volgina, J. Korostoff, and J. M. Dirienzo, “Role of aromatic amino acids in receptor binding activity and subunit assembly of the cytolethal distending toxin of Aggregatibacter actinomycetemcomitans,” Infection and Immunity, vol. 76, no. 7, pp. 2812–2821, 2008.
[60]  L. Li, C. Ding, J.-L. Duan et al., “A New Functional Site W115 in CdtA Is Critical for Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin,” PLoS ONE, vol. 8, no. 6, Article ID e65729, 2013.
[61]  F. Kanno, J. Korostoff, A. Volgina, and J. M. DiRienzo, “Resistance of human periodontal ligament fibroblasts to the cytolethal distending toxin of Actinobacillus actinomycetemcomitans,” Journal of Periodontology, vol. 76, no. 7, pp. 1189–1201, 2005.
[62]  R. B. Lee, D. C. Hassane, D. L. Cottle, and C. L. Pickett, “Interactions of Campylobacter jejuni cytolethal distending toxin subunits CdtA and CdtC with HeLa cells,” Infection and Immunity, vol. 71, no. 9, pp. 4883–4890, 2003.
[63]  S. Akifusa, W. Heywood, S. P. Nair, G. Stenbeck, and B. Henderson, “Mechanism of internalization of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans,” Microbiology, vol. 151, no. 5, pp. 1395–1402, 2005.
[64]  K. Mise, S. Akifusa, S. Watarai, T. Ansai, T. Nishihara, and T. Takehara, “Involvement of ganglioside GM3 in G2/M cell cycle arrest of human monocytic cells induced by Actinobacillus actinomycetemcomitans cytolethal distending toxin,” Infection and Immunity, vol. 73, no. 8, pp. 4846–4852, 2005.
[65]  A. G. Tonevitsky, O. S. Zhukova, N. V. Mirimanova, V. G. Omelyanenko, N. V. Timofeeva, and L. D. Bergelson, “Effect of gangliosides on binding, internalization and cytotoxic activity of ricin,” FEBS Letters, vol. 264, no. 2, pp. 249–252, 1990.
[66]  J. Holmgren, P. Fredman, M. Lindblad, A. M. Svennerholm, and L. Svennerholm, “Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin,” Infection and Immunity, vol. 38, no. 2, pp. 424–433, 1982.
[67]  D. R. Critchley, C. H. Streuli, S. Kellie, S. Ansell, and B. Patel, “Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity,” Biochemical Journal, vol. 204, no. 1, pp. 209–219, 1982.
[68]  K. Sandvig, B. Spilsberg, S. U. Lauvrak, M. L. Torgersen, T.-G. Iversen, and B. van Deurs, “Pathways followed by protein toxins into cells,” International Journal of Medical Microbiology, vol. 293, no. 7-8, pp. 483–490, 2004.
[69]  N. V. Prokazova, N. N. Samovilova, E. V. Gracheva, and N. K. Golovanova, “Ganglioside GM3 and its biological functions,” Biochemistry (Moscow), vol. 74, no. 3, pp. 235–249, 2009.
[70]  K. Boesze-Battaglia, D. Besack, T. McKay et al., “Cholesterol-rich membrane microdomains mediate cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal-distending toxin,” Cellular Microbiology, vol. 8, no. 5, pp. 823–836, 2006.
[71]  K. Boesze-Battaglia, A. Brown, L. Walker et al., “Cytolethal distending toxin-induced cell cycle arrest of lymphocytes is dependent upon recognition and binding to cholesterol,” The Journal of Biological Chemistry, vol. 284, no. 16, pp. 10650–10658, 2009.
[72]  J. E. Carette, C. P. Guimaraes, M. Varadarajan et al., “Haploid genetic screens in human cells identify host factors used by pathogens,” Science, vol. 326, no. 5957, pp. 1231–1235, 2009.
[73]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[74]  C. A. Elwell and L. A. Dreyfus, “DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest,” Molecular Microbiology, vol. 37, no. 4, pp. 952–963, 2000.
[75]  M. Lara-Tejero and J. E. Galan, “A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein,” Science, vol. 290, no. 5490, pp. 354–357, 2000.
[76]  K. Hofmann, S. Tomiuk, G. Wolff, and W. Stoffel, “Cloning and characterization of the mammalian brain-specific, Mg2+- dependent neutral sphingomyelinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5895–5900, 2000.
[77]  X. Cortes-Bratti, T. Frisan, and M. Thelestam, “The cytolethal distending toxins induce DNA damage and cell cycle arrest,” Toxicon, vol. 39, no. 11, pp. 1729–1736, 2001.
[78]  T. Frisan, X. Cortes-Bratti, E. Chaves-Olarte, B. Stenerl?w, and M. Thelestam, “The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA,” Cellular Microbiology, vol. 5, no. 10, pp. 695–707, 2003.
[79]  R. P. Dassanayake, M. A. Griep, and G. E. Duhamel, “The cytolethal distending toxin B sub-unit of Helicobacter hepaticus is a Ca2+- and Mg2+-dependent neutral nuclease,” FEMS Microbiology Letters, vol. 251, no. 2, pp. 219–225, 2005.
[80]  J. M. DiRienzo, L. Cao, A. Volgina, G. Bandelac, and J. Korostoff, “Functional and structural characterization of chimeras of a bacterial genotoxin and human type I DNAse,” FEMS Microbiology Letters, vol. 291, no. 2, pp. 222–231, 2009.
[81]  L. Guerra, H. S. Carr, A. Richter-Dahlfors et al., “A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage,” PLoS ONE, vol. 3, no. 5, Article ID e2254, 2008.
[82]  L. Guerra, R. Guidi, I. Slot et al., “Bacterial genotoxin triggers FEN1-dependent RhoA activation, cytoskeleton remodeling and cell survival,” Journal of Cell Science, vol. 124, no. 16, pp. 2735–2742, 2011.
[83]  S. Nishikubo, M. Ohara, Y. Ueno et al., “An N-terminal Segment of the Active Component of the Bacterial Genotoxin Cytolethal Distending Toxin B (CDTB) Directs CDTB into the Nucleus,” Journal of Biological Chemistry, vol. 278, no. 50, pp. 50671–50681, 2003.
[84]  Y. Fedor, J. Vignard, M.-L. Nicolau-Travers et al., “From single-strand breaks to double-strand breaks during S-phase: a new mode of action of the Escherichia coli cytolethal distending toxin,” Cellular Microbiology, vol. 15, no. 1, pp. 1–15, 2013.
[85]  M. Brigotti, P. Accorsi, D. Carnicelli et al., “Shiga toxin 1: damage to DNA in vitro,” Toxicon, vol. 39, no. 2-3, pp. 341–348, 2000.
[86]  L. Guerra, X. Cortes-Bratti, R. Guidi, and T. Frisan, “The biology of the cytolethal distending toxins,” Toxins, vol. 3, no. 3, pp. 172–190, 2011.
[87]  W. Heywood, B. Henderson, and S. P. Nair, “Cytolethal distending toxin: creating a gap in the cell cycle,” Journal of Medical Microbiology, vol. 54, no. 3, pp. 207–216, 2005.
[88]  R. N. Jinadasa, S. E. Bloom, R. S. Weiss, and G. E. Duhamel, “Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages,” Microbiology, vol. 157, no. 7, pp. 1851–1875, 2011.
[89]  E. Oswald, J.-P. Nougayrède, F. Taieb, and M. Sugai, “Bacterial toxins that modulate host cell-cycle progression,” Current Opinion in Microbiology, vol. 8, no. 1, pp. 83–91, 2005.
[90]  J. L. Smith and D. O. Bayles, “The contribution of cytolethal distending toxin to bacterial pathogenesis,” Critical Reviews in Microbiology, vol. 32, no. 4, pp. 227–248, 2006.
[91]  C. A. Whitehouse, P. B. Balbo, E. C. Pesci, D. L. Cottle, P. M. Mirabito, and C. L. Pickett, “Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block,” Infection and Immunity, vol. 66, no. 5, pp. 1934–1940, 1998.
[92]  M. Lisby and R. Rothstein, “Localization of checkpoint and repair proteins in eukaryotes,” Biochimie, vol. 87, no. 7, pp. 579–589, 2005.
[93]  J. Melo and D. Toczyski, “A unified view of the DNA-damage checkpoint,” Current Opinion in Cell Biology, vol. 14, no. 2, pp. 237–245, 2002.
[94]  X. Cortes-Bratti, C. Karlsson, T. Lagerg?rd, M. Thelestam, and T. Frisan, “The Haemophilus ducreyi cytolethal distending toxin induces cell cycle arrest and apoptosis via the DNA damage checkpoint pathways,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 5296–5302, 2001.
[95]  T. Frisan, X. Cortes-Bratti, and M. Thelestam, “Cytolethal distending toxins and activation of DNA damage-dependent checkpoint responses,” International Journal of Medical Microbiology, vol. 291, no. 6-7, pp. 495–499, 2001.
[96]  D. C. Hassane, R. B. Lee, and C. L. Pickett, “Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells,” Infection and Immunity, vol. 71, no. 1, pp. 541–545, 2003.
[97]  K. Harada and G. R. Ogden, “An overview of the cell cycle arrest protein, p21WAF1,” Oral Oncology, vol. 36, no. 1, pp. 3–7, 2000.
[98]  T. Sato, T. Koseki, K. Yamato et al., “p53-independent expression of p21CIP1/WAF1 in plasmacytic cells during G2 cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal distending toxin,” Infection and Immunity, vol. 70, no. 2, pp. 528–534, 2002.
[99]  W. R. Taylor and G. R. Stark, “Regulation of the G2/M transition by p53,” Oncogene, vol. 20, no. 15, pp. 1803–1815, 2001.
[100]  G. N. Belibasakis, A. Mattsson, Y. Wang, C. Chen, and A. Johansson, “Cell cycle arrest of human gingival fibroblasts and periodontal ligament cells by Actinobacillus actinomycetemcomitans: involvement of the cytolethal distending toxin,” APMIS, vol. 112, no. 10, pp. 674–685, 2004.
[101]  G. Belibasakis, A. Johansson, Y. Wang et al., “Inhibited proliferation of human periodontal ligament cells and gingival fibroblasts by Actinobacillus actinomycetemcomitans: involvement of the cytolethal distending toxin,” European Journal of Oral Science, vol. 110, no. 5, pp. 366–373, 2002.
[102]  C. Comayras, C. Tasca, S. Y. Pérès, B. Ducommun, E. Oswald, and J. de Rycke, “Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation,” Infection and Immunity, vol. 65, no. 12, pp. 5088–5095, 1997.
[103]  J. de Rycke, V. Sert, C. Comayras, and C. Tasca, “Sequence of lethal events in HeLa cells exposed to the G2 blocking cytolethal distending toxin,” European Journal of Cell Biology, vol. 79, no. 3, pp. 192–201, 2000.
[104]  N. Escalas, N. Davezac, J. De Rycke, V. Baldin, R. Mazars, and B. Ducommun, “Study of the cytolethal distending toxin-induced cell cycle arrest in HeLa cells: involvement of the CDC25 phosphatase,” Experimental Cell Research, vol. 257, no. 1, pp. 206–212, 2000.
[105]  V. Sert, C. Cans, C. Tasca et al., “The bacterial cytolethal distending toxin (CDT) triggers a G2 cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand breaks,” Oncogene, vol. 18, no. 46, pp. 6296–6304, 1999.
[106]  B. J. Shenker, T. McKay, S. Datar, M. Miller, R. Chowhan, and D. Demuth, “Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells,” Journal of Immunology, vol. 162, no. 8, pp. 4773–4780, 1999.
[107]  B. J. Shenker, D. R. Demuth, and A. Zekavat, “Exposure of lymphocytes to high doses of Actinobacillus actinomycetemcomitans cytolethal distending toxin induces rapid onset of apoptosis-mediated DNA fragmentation,” Infection and Immunity, vol. 74, no. 4, pp. 2080–2092, 2006.
[108]  M. K. Stevens, J. L. Latimer, S. R. Lumbley et al., “Characterization of a Haemophilus ducreyi mutant deficient in expression of cytolethal distending toxin,” Infection and Immunity, vol. 67, no. 8, pp. 3900–3908, 1999.
[109]  M. Sugai, T. Kawamoto, S. Y. Pérès et al., “The cell cycle-specific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin,” Infection and Immunity, vol. 66, no. 10, pp. 5008–5019, 1998.
[110]  N. S. Taylor, Z. Ge, Z. Shen, F. E. Dewhirst, and J. G. Fox, “Cytolethal distending toxin: a potential virulence factor for Helicobacter cinaedi,” Journal of Infectious Diseases, vol. 188, no. 12, pp. 1892–1897, 2003.
[111]  J. Smith, L. M. Tho, N. Xu, and D. A. Gillespie, “The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer,” Advances in Cancer Research, vol. 108, pp. 73–112, 2010.
[112]  J.-P. Nougayrède, F. Taieb, J. de Rycke, and E. Oswald, “Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle,” Trends in Microbiology, vol. 13, no. 3, pp. 103–110, 2005.
[113]  Y. Shiloh, “ATM and related protein kinases: safeguarding genome integrity,” Nature Reviews Cancer, vol. 3, no. 3, pp. 155–168, 2003.
[114]  L. Guerra, A. Albihn, S. Tronnersj? et al., “Myc is required for activation of the ATM-dependent checkpoints in response to DNA damage,” PLoS ONE, vol. 5, no. 1, Article ID e8924, 2010.
[115]  V. Gelfanova, E. J. Hansen, and S. M. Spinola, “Cytolethal distending toxin of Haemophilus ducreyi induces apoptotic death of Jurkat T cells,” Infection and Immunity, vol. 67, no. 12, pp. 6394–6402, 1999.
[116]  B. J. Shenker, R. H. Hoffmaster, A. Zekavat, N. Yamaguchi, E. T. Lally, and D. R. Demuth, “Induction of apoptosis in human T cells by Actinobacillus actinomycetemcomitans cytolethal distending toxin is a consequence of G2 arrest of the cell cycle,” Journal of Immunology, vol. 167, no. 1, pp. 435–441, 2001.
[117]  M. Dlakic, “Is CdtB a nuclease or a phosphatase?” Science, vol. 291, article 547, no. 5504, 2001.
[118]  B. J. Shenker, M. Dlaki?, L. P. Walker et al., “A novel mode of action for a microbial-derived immunotoxin: the cytolethal distending toxin subunit B exhibits phosphatidylinositol 3,4,5-triphosphate phosphatase activity,” The Journal of Immunology, vol. 178, no. 8, pp. 5099–5108, 2007.
[119]  B. J. Shenker, L. P. Walker, A. Zekavat, M. Dlakic, and K. Boesze-Battaglia, “Blockade of the PI-3K signalling pathway by the Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces macrophages to synthesize and secrete pro-inflammatory cytokines,” Cellular Microbiology, vol. 16, no. 9, pp. 1391–1404, 2014.
[120]  K. Hazeki, K. Nigorikawa, and O. Hazeki, “Role of phosphoinositide 3-kinase in innate immunity,” Biological & Pharmaceutical Bulletin, vol. 30, no. 9, pp. 1617–1623, 2007.
[121]  L. Asnaghi, P. Bruno, M. Priulla, and A. Nicolin, “mTOR: a protein kinase switching between life and death,” Pharmacological Research, vol. 50, no. 6, pp. 545–549, 2004.
[122]  T. E. Hickey, A. L. McVeigh, D. A. Scott et al., “Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells,” Infection and Immunity, vol. 68, no. 12, pp. 6535–6541, 2000.
[123]  E. S. Ando-Suguimoto, M. P. da Silva, D. Kawamoto, C. Chen, J. M. DiRienzo, and M. P. Mayer, “The cytolethal distending toxin of Aggregatibacter actinomycetemcomitans inhibits macrophage phagocytosis and subverts cytokine production,” Cytokine, vol. 66, no. 1, pp. 46–53, 2014.
[124]  G. N. Belibasakis, A. Johansson, Y. Wang et al., “Cytokine responses of human gingival fibroblasts to Actinobacillus actinomycetemcomitans cytolethal distending toxin,” Cytokine, vol. 30, no. 2, pp. 56–63, 2005.
[125]  G. N. Belibasakis, A. Johansson, Y. Wang, C. Chen, S. Kalfas, and U. H. Lerner, “The cytolethal distending toxin induces receptor activator of NF-kappaB ligand expression in human gingival fibroblasts and periodontal ligament cells,” Infection and Immunity, vol. 73, no. 1, pp. 342–351, 2005.
[126]  Y. Uchida, H. Shiba, H. Komatsuzawa et al., “Expression of IL-1β and IL-8 by human gingival epithelial cells in response to Actinobacillus actinomycetemcomitans,” Cytokine, vol. 14, no. 3, pp. 152–161, 2001.
[127]  G. N. Belibasakis, M. Brage, T. Lagerg?rd, and A. Johansson, “Cytolethal distending toxin upregulates RANKL expression in Jurkat T-cells,” APMIS, vol. 116, no. 6, pp. 499–506, 2008.
[128]  H. Hsu, D. L. Lacey, C. R. Dunstan et al., “Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3540–3545, 1999.
[129]  W. J. Boyle, W. S. Simonet, and D. L. Lacey, “Osteoclast differentiation and activation,” Nature, vol. 423, no. 6937, pp. 337–342, 2003.
[130]  D. Liu, J. K. Xu, L. Figliomeni et al., “Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction,” International Journal of Molecular Medicine, vol. 11, no. 1, pp. 17–21, 2003.
[131]  M. Mogi, N. Ozeki, H. Nakamura, and A. Togari, “Dual roles for NF-kappaB activation in osteoblastic cells by serum deprivation: osteoblastic apoptosis and cell-cycle arrest,” Bone, vol. 35, no. 2, pp. 507–516, 2004.
[132]  G. N. Belibasakis and N. Bostanci, “Inflammatory and bone remodeling responses to the cytolethal distending toxins,” Cells, vol. 3, no. 2, pp. 236–246, 2014.
[133]  J.-P. Gorvel and S. Méresse, “Maturation steps of the Salmonella-containing vacuole,” Microbes and Infection, vol. 3, no. 14-15, pp. 1299–1303, 2001.
[134]  D. W. Holden, “Trafficking of the Salmonella vacuole in macrophages,” Traffic, vol. 3, no. 3, pp. 161–169, 2002.
[135]  K. Sandvig, J. Bergan, S. Kavaliauskiene, and T. Skotland, “Lipid requirements for entry of protein toxins into cells,” Progress in Lipid Research, vol. 54, pp. 1–13, 2014.
[136]  J. S. Bonifacino and R. Rojas, “Retrograde transport from endosomes to the trans-Golgi network,” Nature Reviews Molecular Cell Biology, vol. 7, no. 8, pp. 568–579, 2006.
[137]  P. De Figueiredo, D. Drecktrah, R. S. Polizotto, N. B. Cole, J. Lippincott-Schwartz, and W. J. Brown, “Phospholipase A2 antagonists inhibit constitutive retrograde membrane traffic to the reticulum,” Traffic, vol. 1, no. 6, pp. 504–511, 2000.
[138]  T. I. Klokk, A. B. D. Lingelem, A.-G. Myrann, and K. Sandvig, “Role of phospholipase A2 in retrograde transport of ricin,” Toxins, vol. 3, no. 9, pp. 1203–1219, 2011.
[139]  P. U. Mayerhofer, J. P. Cook, J. Wahlman et al., “Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C,” Journal of Biological Chemistry, vol. 284, no. 15, pp. 10232–10242, 2009.
[140]  M. L. Suhan and C. J. Hovde, “Disruption of an internal membrane-spanning region in Shiga toxin 1 reduces cytotoxicity,” Infection and Immunity, vol. 66, no. 11, pp. 5252–5259, 1998.
[141]  K. A. Bradley, J. Mogridge, M. Mourez, R. J. Collier, and J. A. T. Young, “Identification of the cellular receptor for anthrax toxin,” Nature, vol. 414, no. 6860, pp. 225–229, 2001.
[142]  K. A. Bradley and J. A. T. Young, “Anthrax toxin receptor proteins,” Biochemical Pharmacology, vol. 65, no. 3, pp. 309–314, 2003.
[143]  S. Liu, Y. Zhang, B. Hoover, and S. H. Leppla, “The receptors that mediate the direct lethality of anthrax toxin,” Toxins (Basel), vol. 5, no. 1, pp. 1–8, 2013.
[144]  M. Martchenko, S.-Y. Jeong, and S. N. Cohen, “Heterodimeric integrin complexes containing β1-integrin promote internalization and lethality of anthrax toxin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 35, pp. 15583–15588, 2010.
[145]  H. M. Scobie, G. J. A. Rainey, K. A. Bradley, and J. A. T. Young, “Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5170–5174, 2003.
[146]  L. Abrami, S. Liu, P. Cosson, S. H. Leppla, and F. G. van der Goot, “Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process,” Journal of Cell Biology, vol. 160, no. 3, pp. 321–328, 2003.
[147]  D. B. Lacy, M. Mourez, A. Fouassier, and R. J. Collier, “Mapping the anthrax protective antigen binding site on the lethal and edema factors,” Journal of Biological Chemistry, vol. 277, no. 4, pp. 3006–3010, 2002.
[148]  M. Mourez, D. B. Lacy, K. Cunningham et al., “2001: a year of major advances in anthrax toxin research,” Trends in Microbiology, vol. 10, no. 6, pp. 287–293, 2002.
[149]  M. Kitamura, M. Iwamori, and Y. Nagai, “Interaction between Clostridium botulinum neurotoxin and gangliosides,” Biochimica et Biophysica Acta, vol. 628, no. 3, pp. 328–335, 1980.
[150]  D. Dressler and F. A. Saberi, “Botulinum toxin: mechanisms of action,” European Neurology, vol. 53, no. 1, pp. 3–9, 2005.
[151]  Y. Ueno, M. Ohara, T. Kawamoto et al., “Biogenesis of the Actinobacillus actinomycetemcomitans cytolethal distending toxin holotoxin,” Infection and Immunity, vol. 74, no. 6, pp. 3480–3487, 2006.
[152]  A. Frisk, M. Lebens, C. Johansson et al., “The role of different protein components from the Haemophilus ducreyi cytolethal distending toxin in the generation of cell toxicity,” Microbial Pathogenesis, vol. 30, no. 6, pp. 313–324, 2001.
[153]  B. J. Shenker, D. Besack, T. McKay, L. Pankoski, A. Zekavat, and D. R. Demuth, “Actinobacillus actinomycetemcomitans cytolethal distending toxin ( Cdt ): evidence that the holotoxin is composed of three subunits: CdtA , CdtB , and CdtC,” Journal of Immunology, vol. 172, no. 1, pp. 410–417, 2004.
[154]  X. Hu and C. E. Stebbins, “Dynamics and assembly of the cytolethal distending toxin,” Proteins, vol. 65, no. 4, pp. 843–855, 2006.
[155]  L. Guerra, K. Teter, B. N. Lilley et al., “Cellular internalization of cytolethal distending toxin: a new end to a known pathway,” Cellular Microbiology, vol. 7, no. 7, pp. 921–934, 2005.
[156]  S. Sever, “Dynamin and endocytosis,” Current Opinion in Cell Biology, vol. 14, no. 4, pp. 463–467, 2002.
[157]  S. Sever, A. B. Muhlberg, and S. L. Schmid, “Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis receptor-mediated endocytosis,” Nature, vol. 398, no. 6727, pp. 481–486, 1999.
[158]  A. Gargi, M. Reno, and S. R. Blanke, “Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally?” Frontiers in Cellular and Infection Microbiology, vol. 2, no. 124, pp. 1–11, 2012.
[159]  L. Guerra, K. N. Nemec, S. Massey et al., “A novel mode of translocation for cytolethal distending toxin,” Biochimica et Biophysica Acta, vol. 1793, no. 3, pp. 489–495, 2009.
[160]  M. Damek-Poprawa, J. Y. Jang, A. Volgina, J. Korostoff, and J. M. DiRienzo, “Localization of Aggregatibacter actinomycetemcomitans cytolethal distending toxin subunits during intoxication of live cells,” Infection and Immunity, vol. 80, no. 8, pp. 2761–2770, 2012.
[161]  A. Gargi, B. Tamilselvam, B. Powers et al., “Cellular interactions of the cytolethal distending toxins from Escherichia coli and Haemophilus ducreyi,” The Journal of Biological Chemistry, vol. 288, no. 11, pp. 7492–7505, 2013.
[162]  L. A. McSweeney and L. A. Dreyfus, “Nuclear localization of the Escherichia coli cytolethal distending toxin CdtB subunit,” Cellular Microbiology, vol. 6, no. 5, pp. 447–458, 2004.
[163]  J. Coburn and J. M. Leong, “Microbiology. Arresting features of bacterial toxins,” Science, vol. 290, no. 5490, pp. 287–288, 2000.
[164]  C. Comayras, C. Tasca, S. Y. Pérès, B. Ducommun, E. Oswald, and J. De Rycke, “Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation,” Infection and Immunity, vol. 65, no. 12, pp. 5088–5095, 1997.
[165]  J. M. DiRienzo, M. Song, L. S. Y. Wan, and R. P. Ellen, “Kinetics of KB and HEp-2 cell responses to an invasive, cytolethal distending toxin-producing strain of Actinobacillus actinomycetemcomitans,” Oral Microbiology and Immunology, vol. 17, no. 4, pp. 245–251, 2002.
[166]  X. Cortes-Bratti, E. Chaves-Olarte, T. Lagerg?rd, and M. Thelestam, “The cytolethal distending toxin from the chancroid bacterium Haemophilus ducreyi induces cell-cycle arrest in the G2 phase,” Journal of Clinical Investigation, vol. 103, no. 1, pp. 107–115, 1999.
[167]  G. Lépine, S. Caudry, J. M. DiRienzo, and R. P. Ellen, “Epithelial cell invasion by Actinobacillus actinomycetemcomitans strains from restriction fragment-length polymorphism groups associated with juvenile periodontitis or carrier status,” Oral Microbiology and Immunology, vol. 13, no. 6, pp. 341–347, 1998.
[168]  D. H. Meyer, J. E. Lippmann, and P. M. Fives-Taylor, “Invasion of epithelial cells by Actinobacillus actinomycetemcomitans: a dynamic, multistep process,” Infection and Immunity, vol. 64, no. 8, pp. 2988–2997, 1996.
[169]  D. H. Meyer, P. K. Sreenivasan, and P. M. Fives-Taylor, “Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans,” Infection and Immunity, vol. 59, no. 8, pp. 2719–2726, 1991.
[170]  E. P. Gilchrist, M. P. Moyer, E. J. Shillitoe, N. Clare, and V. A. Murrah, “Establishment of a human polyclonal oral epithelial cell line,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 90, no. 3, pp. 340–347, 2000.
[171]  P. Kang, J. Korostoff, A. Volgina, W. Grzesik, and J. M. DiRienzo, “Differential effect of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans on co-cultures of human oral cells,” Journal of Medical Microbiology, vol. 54, no. 8, pp. 785–794, 2005.
[172]  M. Damek-Poprawa, M. Haris, A. Volgina, J. Korostoff, and J. M. DiRienzo, “Cytolethal distending toxin damages the oral epithelium of gingival explants,” Journal of Dental Research, vol. 90, no. 7, pp. 874–879, 2011.
[173]  M. Alaoui-El-Azher, J. J. Mans, H. V. Baker et al., “Role of the ATM-checkpoint kinase 2 pathway in CDT-mediated apoptosis of gingival epithelial cells,” PLoS ONE, vol. 5, no. 7, Article ID e11714, 2010.
[174]  A. Nalbant, C. Chen, Y. Wang, and H. H. Zadeh, “Induction of T-cell apoptosis by Actinobacillus actinomycetemcomitans mutants with deletion ltxA and cdtABC genes: possible activity of GroEL-like molecule,” Oral Microbiology and Immunology, vol. 18, no. 6, pp. 339–349, 2003.
[175]  J. C. Reed, L. Meister, S. Tanaka et al., “Differential expression of bcl2 protooncogene in neuroblastoma and other human tumor cell lines of neural origin,” Cancer Research, vol. 51, no. 24, pp. 6529–6538, 1991.
[176]  T. S. Griffith, T. Brunner, S. M. Fletcher, D. R. Green, and T. A. Ferguson, “Fas ligand-induced apoptosis as a mechanism of immune privilege,” Science, vol. 270, no. 5239, pp. 1189–1192, 1995.
[177]  M. Ohara, T. Hayashi, Y. Kusunoki, M. Miyauchi, T. Takata, and M. Sugai, “Caspase-2 and caspase-7 are involved in cytolethal distending toxin-induced apoptosis in Jurkat and MOLT-4 T-cell lines,” Infection and Immunity, vol. 72, no. 2, pp. 871–879, 2004.
[178]  M. Ohara, T. Hayashi, Y. Kusunoki et al., “Cytolethal distending toxin induces caspase-dependent and -independent cell death in MOLT-4 cells,” Infection and Immunity, vol. 76, no. 10, pp. 4783–4791, 2008.
[179]  S. D. P. Rabin, J. G. Flitton, and D. R. Demuth, “Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces apoptosis in nonproliferating macrophages by a phosphatase-independent mechanism,” Infection and Immunity, vol. 77, no. 8, pp. 3161–3169, 2009.
[180]  K. P. S. Fernandes, M. P. A. Mayer, E. S. Ando, A. G. Ulbrich, J. G. P. Amarente-Mendes, and M. Russo, “Inhibition of interferon-γ-induced nitric oxide production in endotoxin-activated macrophages by cytolethal distending toxin,” Oral Microbiology and Immunology, vol. 23, no. 5, pp. 360–366, 2008.
[181]  J. D. Anderson, A. J. MacNab, W. R. Gransden, S. M. A. Damm, W. M. Johnson, and H. Lior, “Gastroenteritis and encephalopathy associated with a strain of Escherichia coli 055:K59:H4 that produced a cytolethal distending toxin,” Pediatric Infectious Disease Journal, vol. 6, no. 12, pp. 1135–1136, 1987.
[182]  M. Ansaruzzaman, M. J. Albert, S. Nahar et al., “Clonal groups of enteropathogenic Escherichia coli isolated in case-control studies of diarrhoea in Bangladesh,” Journal of Medical Microbiology, vol. 49, no. 2, pp. 177–185, 2000.
[183]  H. Karch, P. I. Tarr, and M. Bielaszewska, “Enterohaemorrhagic Escherichia coli in human medicine,” International Journal of Medical Microbiology, vol. 295, no. 6-7, pp. 405–418, 2005.
[184]  J. I. Dasti, A. M. Tareen, R. Lugert, A. E. Zautner, and U. Gro?, “Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms,” International Journal of Medical Microbiology, vol. 300, no. 4, pp. 205–211, 2010.
[185]  J. G. Fox, A. B. Rogers, M. T. Whary et al., “Gastroenteritis in NF- kappaB -deficient mice is produced with wild-type Camplyobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains,” Infection and Immunity, vol. 72, no. 2, pp. 1116–1125, 2004.
[186]  D. Purdy, C. M. Buswell, A. E. Hodgson, K. McAlpine, I. Henderson, and S. A. Leach, “Characterization of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni,” Journal of Medical Microbiology, vol. 49, no. 5, pp. 473–479, 2000.
[187]  N. P. Mortensen, P. Schiellerup, N. Boisen et al., “The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome,” APMIS, vol. 119, no. 9, pp. 626–634, 2011.
[188]  D. A. Lewis, M. K. Stevens, J. L. Latimer et al., “Characterization of Haemophilus ducreyi cdtA, cdtB, and cdtC mutants in in vitro and in vivo systems,” Infection and Immunity, vol. 69, no. 9, pp. 5626–5634, 2001.
[189]  C. Wising, L. M?lne, I.-M. Jonsson, K. Ahlman, and T. Lagerg?rd, “The cytolethal distending toxin of Haemophilus ducreyi aggravates dermal lesions in a rabbit model of chancroid,” Microbes and Infection, vol. 7, no. 5-6, pp. 867–874, 2005.
[190]  R. S. Young, K. R. Fortney, V. Gelfanova, et al., “Expression of cytolethal distending toxin and hemolysin is not required for pustule formation by Haemophilus ducreyi in human volunteers,” Infection and Immunity, vol. 69, no. 3, pp. 1938–1942, 2001.
[191]  C. H. ?berg, G. Antonoglou, D. Haubek, F. Kwamin, R. Claesson, and A. Johansson, “Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression,” PLoS ONE, vol. 8, no. 6, Article ID e65781, 2013.
[192]  C. H. ?berg, B. Sj?din, L. Lakio, P. J. Pussinen, A. Johansson, and R. Claesson, “Presence of Aggregatibacter actinomycetemcomitans in young individuals: a 16-year clinical and microbiological follow-up study,” Journal of Clinical Periodontology, vol. 36, no. 10, pp. 815–822, 2009.
[193]  P. Bandhaya, P. Saraithong, K. Likittanasombat, B. Hengprasith, and K. Torrungruang, “Aggregatibacter actinomycetemcomitans serotypes, the JP2 clone and cytolethal distending toxin genes in a Thai population,” Journal of Clinical Periodontology, vol. 39, no. 6, pp. 519–525, 2012.
[194]  A. S. Fabris, J. M. DiRienzo, M. Wikstrom, and M. P. A. Mayer, “Detection of cytolethal distending toxin activity and cdt genes in Actinobacillus actinomycetemcomitans isolates from geographically diverse populations,” Oral Microbiology and Immunology, vol. 17, no. 4, pp. 231–238, 2002.
[195]  K. S. Tan, K.-P. Song, and G. Ong, “Cytolethal distending toxin of Actinobacillus actinomycetemcomitans: occurrence and association with periodontal disease,” Journal of Periodontal Research, vol. 37, no. 4, pp. 268–272, 2002.
[196]  X. Wang, L. Li, M. Yang, et al., “Prevalence and distribution of Aggregatibacter actinomycetemcomitans and its cdtB gene in subgingival plaque of Chinese periodontitis patients,” BMC Oral Health, vol. 14, no. 37, pp. 1–7, 2014.
[197]  R. Yamano, M. Ohara, S. Nishikubo et al., “Prevalence of cytolethal distending toxin production in periodontopathogenic bacteria,” Journal of Clinical Microbiology, vol. 41, no. 4, pp. 1391–1398, 2003.
[198]  E. S. Ando, L. A. de-Gennaro, M. Faveri, M. Feres, J. M. DiRienzo, and M. P. A. Mayer, “Immune response to cytolethal distending toxin of Aggregatibacter actinomycetemcomitans in periodontitis patients,” Journal of Periodontal Research, vol. 45, no. 4, pp. 471–480, 2010.
[199]  A. Johansson, K. Buhlin, R. Koski, and A. Gustafsson, “The immunoreactivity of systemic antibodies to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in adult periodontitis,” European Journal of Oral Sciences, vol. 113, no. 3, pp. 197–202, 2005.
[200]  I. Xynogala, A. Volgina, J. M. Dirienzo, and J. Korostoff, “Evaluation of the humoral immune response to the cytolethal distending toxin of Aggregatibacter actinomycetemcomitans Y4 in subjects with localized aggressive periodontitis,” Oral Microbiology and Immunology, vol. 24, no. 2, pp. 116–123, 2009.
[201]  H. M. Feder Jr., J. C. Roberts, J. C. Salazar, H. B. Leopold, and O. Toro-Salazar, “HACEK endocarditis in infants and children: two cases and a literature review,” Pediatric Infectious Disease Journal, vol. 22, no. 6, pp. 557–562, 2003.
[202]  M. Ohara, M. Miyauchi, K. Tsuruda, T. Takata, and M. Sugai, “Topical application of Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces cell cycle arrest in the rat gingival epithelium in vivo,” Journal of Periodontal Research, vol. 46, no. 3, pp. 389–395, 2011.
[203]  M. Damek-Poprawa, J. Korostoff, R. Gill, and J. M. Dirienzo, “Cell junction remodeling in gingival tissue exposed to a microbial toxin,” Journal of Dental Research, vol. 92, no. 6, pp. 518–523, 2013.
[204]  M. Furuse, M. Hata, K. Furuse et al., “Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice,” Journal of Cell Biology, vol. 156, no. 6, pp. 1099–1111, 2002.
[205]  H. Aberle, H. Schwartz, and R. Kemler, “Cadherin-catenin complex: protein interactions and their implications for cadherin function,” Journal of Cellular Biochemistry, vol. 61, no. 4, pp. 514–523, 1996.
[206]  B. Baum and M. Georgiou, “Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling,” Journal of Cell Biology, vol. 192, no. 6, pp. 907–917, 2011.
[207]  P. Ye, C. C. Chapple, R. K. Kumar, and N. Hunter, “Expression patterns of E-cadherin, involucrin, and connexin gap junction proteins in the lining epithelia of inflamed gingiva,” Journal of Pathology, vol. 192, no. 1, pp. 58–66, 2000.
[208]  V. Aragon, K. Chao, and L. A. Dreyfus, “Effect of cytolethal distending toxin on F-actin assembly and cell division in Chinese hamster ovary cells,” Infection and Immunity, vol. 65, no. 9, pp. 3774–3780, 1997.
[209]  J. M. DiRienzo, “Breaking the gingival epithelial barrier: role of the Aggregatibacter actinomycetemcomitans cytolethal distending t oxin in oral infectious disease,” Cells, vol. 3, no. 2, pp. 476–499, 2014.
[210]  B. M. Allos, “Campylobacter jejuni infections: update on emerging issues and trends,” Clinical Infectious Diseases, vol. 32, no. 8, pp. 1201–1206, 2001.
[211]  G. M. Ruiz-Palacios, “The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken,” Clinical Infectious Diseases, vol. 44, no. 5, pp. 701–703, 2007.
[212]  Z. Ge, D. B. Schauer, and J. G. Fox, “In vivo virulence properties of bacterial cytolethal-distending toxin,” Cellular Microbiology, vol. 10, no. 8, pp. 1599–1607, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133