Palm oil mill effluent (POME) is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the fermentation was carried out at 150?rpm, 28 ± 2°C using an inoculum size of 1?mL of 106 cells. Yeasts were isolated from POME, dump site, and palm wine. The POME had chemical oxygen demand (COD) 114.8?gL?1, total solid 76?gL?1, total suspended solid (TSS) 44?gL?1 and total lipid 35.80?gL?1. Raw POME supported accumulation of 4.42?gL?1 dry yeast with amino acid content comparable or superior to the FAO/WHO standard for feed use SCP. Peak COD reduction (83%) was achieved with highest biomass accumulation in 96?h using Saccharomyces sp . POME can be used as carbon source with little or no supplementation to achieve waste-to-value by producing feed grade yeast with reduction in pollution potential. 1. Introduction Palm oil is the most widely consumed vegetable oil and accounts for about 33% of total vegetable oil production in the world [1]. Global palm oil production has been dominated by Indonesia and Malaysia and to a lesser extent by Colombia, Thailand, and Nigeria. Combined, these countries produce over 93% of global palm oil output [2, 3]. Nigeria is currently the fifth leading producer with over 930,000 metric tons annually [4]. The palm oil industry in Nigeria is a major agroenterprise especially in the southern parts where palm trees grow in the wild and in plantations [5]. About 80% of the palm oil industry in Nigeria is dominated by smallholders who typically use manual equipment and, to a lesser extent, semimechanized processors for processing palm fruit [2, 3]. Processing of palm fruit in both methods employs large volumes of water. This results in the production of copious volumes of the liquid waste known as palm oil mill effluent (POME) [6, 7]. Estimates of the volume of POME produced per litre of palm oil extracted from palm fruits are few and variable. This is occasioned by several variables including differences in the efficiencies of the different processes and nature of the fruit. Manual processes appear to be the least efficient in terms of volume of POME generated, with excess of 10 litres of POME being generated for each litre of oil produced in
References
[1]
United Stated Department of Agriculture Foreign Agricultural Service, “Oil Seeds: World Markets and Trade,” 2011, http://www.fas.usda.gov/.
[2]
E. I. Ohimain, A. A. Oyedeji, and S. C. Izah, “Employment effects of smallholder oil palm processing plants in Elele, Rivers State, Nigeria,” International Journal of Applied Research and Technology, vol. 1, no. 6, pp. 83–93, 2012.
[3]
E. I. Ohimain, C. Daokoru-Olukole, S. C. Izah, and E. E. Alaka, “Assessment of the quality of crude palm oil produced by smallholder processors in Rivers State, Nigeria,” Nigerian Journal of Agriculture, Food and Environment, vol. 8, pp. 28–34, 2012.
[4]
IndexMundi, Index Palm Oil Production by Country in 1000 MT, 2013, http://www.indexmundi.com/agriculture/?commodity=palm-oil&graph=production.
[5]
V. O. Nwaugo, G. C. Chinyere, and C. U. Inyang, “Effects of palm oil mill effluents (POME) on soil bacterial flora and enzyme activities in Egbama,” Plant Product Research Journal, vol. 12, pp. 10–13, 2008.
[6]
O. Chavalparit, W. H. Rulkens, A. P. J. Mol, and S. Khaodhair, “Options for environmental sustainability of the crude palm oil industry in Thailand through enhancement of industrial ecosystems,” Environment, Development and Sustainability, vol. 8, no. 2, pp. 271–287, 2006.
[7]
A. L. Ahmad, S. Ismail, and S. Bhatia, “Water recycling from palm oil mill effluent (POME) using membrane technology,” Desalination, vol. 157, no. 1–3, pp. 87–95, 2003.
[8]
E. I. Ohimain and S. C. Izah, “Water minimization and optimization by small-scale palm oil mill in Niger Delta, Nigeria,” Journal of Water Research, vol. 135, pp. 190–198, 2013.
[9]
O. I. Osemwota, “Effect of abattoir effluent on the physical and chemical properties of soils,” Environmental Monitoring and Assessment, vol. 167, no. 1–4, pp. 399–404, 2010.
[10]
Y. S. Madaki1 and L. Seng, “Pollution control: how feasible is zero discharge concepts in Malaysia palm oil mills,” American Journal of Engineering Research, vol. 2, pp. 239–252, 2013.
[11]
S. O-Thong, C. Mamimin, and P. Prasertsan, “Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: Long-term evaluation and microbial community analysis,” Electronic Journal of Biotechnology, vol. 14, no. 5, 2011.
[12]
W. Choorit and P. Wisarnwan, “Effect of temperature on the anaerobic digestion of palm oil mill effluent,” Electronic Journal of Biotechnology, vol. 10, no. 3, pp. 376–385, 2007.
[13]
G. D. Najafpour, A. A. L. Zinatizadeh, A. R. Mohamed, M. Hasnain Isa, and H. Nasrollahzadeh, “High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor,” Process Biochemistry, vol. 41, no. 2, pp. 370–379, 2006.
[14]
A. N. Ma, “Environmental management for the oil palm industry,” Palm Oil Development, vol. 30, pp. 1–10, 2000.
[15]
O. L. Okwute and N. R. Isu, “Impact analysis of palm oil mill effluent on the aerobic bacterial density and ammonium oxidizers in a dumpsite in Anyigba, Kogi State,” African Journal of Biotechnology, vol. 6, no. 2, pp. 116–119, 2007.
[16]
O. O. Awotoye, A. C. Dada, and G. A. O. Arawomo, “Impact of palm oil processing effluent discharge on the quality of receiving soil and river in south western Nigeria,” Journal of Applied Sciences Research, vol. 7, no. 2, pp. 111–118, 2011.
[17]
L. I. N. Ezemonye, D. F. Ogeleka, and F. E. Okieimen, “Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis,” Journal of Hazardous Materials, vol. 157, no. 1, pp. 64–68, 2008.
[18]
J. C. Igwe, C. O. Onyegbado, and A. A. Abia, “Studies on the kinetics and intraparticle diffusivities of BOD, colour and TSS reduction from palm oil mill effluent (POME) using boiler fly ash,” African Journal of Environmental Sciences and Technology, vol. 4, no. 6, pp. 392–400, 2010.
[19]
K. K. Chin, S. W. Lee, and H. H. Mohammad, “A study of palm oil mill effluent treatment using a pond system,” Water Science and Technology, vol. 34, no. 11, pp. 119–123, 1996.
[20]
M. I. A. Karim and A. Q. A. Kamil, “Biological treatment of palm oil mill effluent using Trichoderma viride,” Biological Wastes, vol. 27, no. 2, pp. 143–152, 1989.
[21]
S. Yacob, M. A. Hassan, Y. Shirai, M. Wakisaka, and S. Subash, “Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment,” Chemosphere, vol. 59, no. 11, pp. 1575–1581, 2005.
[22]
A. L. Ahmad, S. Bhatia, N. Ibrahim, and S. Sumathi, “Adsorption of residual oil from palm oil mill effluent using rubber powder,” Brazilian Journal of Chemical Engineering, vol. 22, no. 3, pp. 371–379, 2005.
[23]
A. L. Ahmad, M. F. Chong, S. Bhatia, and S. Ismail, “Drinking water reclamation from palm oil mill effluent (POME) using membrane technology,” Desalination, vol. 191, no. 1–3, pp. 35–44, 2006.
[24]
J. O. Ugwuanyi, “Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation,” Bioresource Technology, vol. 99, no. 8, pp. 3279–3290, 2008.
[25]
F. Federici, F. Fava, N. Kalogerakis, and D. Mantzavinos, “Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill waste waters,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 6, pp. 895–900, 2009.
[26]
Department of Environment, Industrial Processes & The Environmental—Crude Palm Oil Industry, Ministry of Sciences, Technology and the Environment, Putrajaya, Malaysia, 1999.
[27]
M. C. Hadiyanto, M. M. Azimatun Nur, and G. D. Hartano, “Cultivation of Chlorella sp. as biofuel sources in palm oil mill effluent (POME),” International Journal of Renewable Energy Development, vol. 1, no. 2, pp. 45–49, 2012.
[28]
M. Christwardana and D. Soetrisnanto, “Phytoremediations of Palm Oil Mill Effluent (POME) by using aquatic plants and microalge for biomass production,” Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 79–90, 2013.
[29]
C. S. Chooklin, S. Phertmean, B. Cheirsilp, S. Maneerat, and A. Saimmai, “Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3,” Songklanakarin Journal of Science and Technology, vol. 35, no. 2, pp. 167–176, 2013.
[30]
A. Salihu, M. Z. Alam, M. I. AbdulKarim, and H. M. Salleh, “Suitability of using palm oil mill effluent as a medium for lipase production,” African Journal of Biotechnology, vol. 10, no. 11, pp. 2044–2052, 2011.
[31]
K. Fadzilah and M. D. Mashitah, “Cellulases production in palm oil mill effluent: effect of aeration and agitation,” Journal of Applied Sciences, vol. 10, no. 24, pp. 3307–3312, 2010.
[32]
Y. P. Teoh and M. D. Mashitah, “Cellulase production by Pycnoporus sanguineus on oil palm residues through pretreatment and optimization study,” Journal of Applied Sciences, vol. 10, no. 12, pp. 1036–1043, 2010.
[33]
S. S. Rashid, M. Z. Alam, M. I. A. Karim, and M. H. Salleh, “Management of palm oil mill effluent through production of cellulases by filamentous fungi,” World Journal of Microbiology and Biotechnology, vol. 25, no. 12, pp. 2219–2226, 2009.
[34]
A. Sulaiman, M. R. Zakaria, M. A. Hassan, Y. Shirai, and Z. Busu, “Co-digestion of palm oil mill effluent and refined glycerin wash water for chemical oxygen demand removal and methane production,” The American Journal of Environmental Sciences, vol. 5, pp. 639–646, 2009.
[35]
T. Y. Wu, A. W. Mohammad, J. M. Jahim, and N. Anuar, “Investigations on protease production by a wild-type Aspergillus terreus strain using diluted retentate of pre-filtered palm oil mill effluent (POME) as substrate,” Enzyme and Microbial Technology, vol. 39, no. 6, pp. 1223–1229, 2006.
[36]
T. Y. Wu, A. W. Mohammad, J. M. Jahim, and N. Anuar, “Optimized reuse and bioconversion from retentate of pre-filtered palm oil mill effluent (POME) into microbial protease by Aspergillus terreus using response surface methodology,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 9, pp. 1390–1396, 2009.
[37]
P. Jamal, M. Z. Alam, M. Ramlan, M. Salleh, and M. M. Nadzir, “Screening of Aspergillus for citric acid production from Palm Oil Mill Effluent,” Biotechnology, vol. 4, no. 4, pp. 275–278, 2005.
[38]
M. S. Kalil, P. W. Kit, W. M. W. Yusoff, Y. Sadazo, and R. A. Rahman, “Direct fermentation of palm oil mill effluent to acetone- butanol-ehtanol by solvent producing Clostridia,” Pakistan Journal of Biological Sciences, vol. 6, no. 14, pp. 1273–1275, 2003.
[39]
C. P. Kurtzman and J. W. Fell, Eds., The Yeasts: A Taxonomic Study, Elsevier Science, Amsterdam, The Netherlands, 4th edition, 1998.
[40]
M. Irfan, M. I. Nazir, M. Nadeem, M. Gulsher, Q. Syed, and S. Baig, “Optimization of process parameters for the production of single cell biomass of Candida utilis in solid state fermentation,” The American-Eurasian Journal of Agriculture and Environmental Science, vol. 10, pp. 264–270, 2011.
[41]
American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 19th edition, 1995.
[42]
J. Folch, M. Lees, and G. H. Sloane-Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biology and Chemistry, vol. 226, no. 1, pp. 497–509, 1957.
[43]
W. Horwitz and G. W. Latimer Jr., Official Methods of Analysis of AOAC International, Revision 3, AOAC International, Gaithersburg, Md, USA, 18th edition, 2010.
[44]
A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Science, vol. 37, pp. 29–38, 1945.
[45]
FAO/WHO, “Protein quality evaluation,” Report of the Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper 51, Food and Agriculture Organization of the United Nations, Rome, Italy, 1991.
[46]
M. L. Hemming, “A viable solution to the palm oil effluent problem,” in Proceedings of the Malaysian International Symposium on Palm Oil Processing and Marketing, D. A. Earp and W. Newall, Eds., pp. 79–95, Kuala Lumpur, Malaysia, June 1977.
[47]
A. N. Ma, The Planters, Kuala Lumpur Innovations in Management of Palm Oil Mill Effluent, Palm Oil Research Institute of Malaysia (PORIM), 1999.
[48]
P. F. Rupani, R. P. Singh, H. Ibrahim, and N. Esa, “Review of current Palm Oil Mill Effluent (POME) treatment methods: vermicomposting as a sustainable practice,” World Applied Sciences Journal, vol. 11, pp. 70–81, 2010.
[49]
International Finance Corporation (IFC), Environment, Health and Safety Guidelines for Vegetable Oil Processing, World Bank Group, 2007.
[50]
N. Oswal, P. M. Sarma, S. S. Zinjarde, and A. Pant, “Palm oil mill effluent treatment by a tropical marine yeast,” Bioresource Technology, vol. 85, no. 1, pp. 35–37, 2002.
[51]
M. Z. Alam, P. Jamal, and M. M. Nadzir, “Bioconversion of palm oil mill effluent for citric acid production: statistical optimization of fermentation media and time by central composite design,” World Journal of Microbiology and Biotechnology, vol. 24, no. 7, pp. 1177–1185, 2008.
[52]
T. W. Barker and J. T. Worgan, “The utilisation of palm oil processing effluents as substrates for microbial protein production by the fungus Aspergillus oryzae,” European Journal of Applied Microbiology and Biotechnology, vol. 11, no. 4, pp. 234–240, 1981.
[53]
C. Saenge, B. Cheirsilp, T. T. Suksaroge, and T. Bourtoom, “Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production,” Biotechnology and Bioprocess Engineering, vol. 16, no. 1, pp. 23–33, 2011.
[54]
C. O. Nwuche, H. Aiyoaji, and J. C. Ogbonna, “Citric acid production from cellulase-digested palm oil mill effluent,” Asian Journal of Biotechnology, vol. 5, no. 2, pp. 51–60, 2013.