The nucleoside 2,2,4-triamino-5(2H)-oxazolone (Oz) can result from oxidative damage to guanine residues in DNA. Despite differences among the three polymerases (Pol β, KF exo?, and Pol η) regarding nucleotide incorporation patterns opposite Oz, all three polymerases can incorporate guanine opposite Oz. Based on ab initio calculations, we proposed a structure for a stable Oz:G base pair. Here, to assess the stability of each Oz-containing base pair (Oz:G, Oz:A, Oz:C, and Oz:T) upon DNA replication, we determined the efficiency of Pol β-, KF exo?-, or Pol η-catalyzed primer extension beyond each base pair. With each polymerase, extension beyond Oz:G was more efficient than that beyond Oz:A, Oz:C, or Oz:T. Moreover, thermal denaturation studies revealed that the value for the duplex containing Oz:G was significantly higher than those obtained for duplexes containing Oz:A, Oz:C, or Oz:T. Therefore, the results from ab initio calculations along with those from DNA replication assays and thermal denaturation experiments supported the conclusion that Oz:G is the most stable of the Oz-containing base pairs. 1. Introduction DNA is constantly damaged by various oxidative stresses. Oxidized DNA causes mutations that can lead to aging, carcinogenesis, and other diseases. Guanine has the lowest oxidation potential among the four bases; therefore, it is much more sensitive than A, T, or C to oxidative stresses. G:C to T:A and G:C to C:G transversions are preferentially caused by several oxidative stresses and are observed in vivo; for example, G:C-T:A and G:C-C:G transversions caused by passive smoking were detected in codons 12 and 13 of the K-ras gene [1]. 8-Oxo-7,8-dihydro-guanine (8-oxoG) is a typical form of oxidative guanine damage (Scheme 1), and 8-oxoG arises under various oxidative conditions. 8-oxoG can pair with adenine but not guanine; therefore, 8-oxoG can generate G:C-T:A transversions [2]. G:C-C:G transversions are assumed to be caused by other forms of oxidative guanine damage. Scheme 1: Products of oxidation of guanine and 8-oxoG. 2,5-Diamino-4H-imidazol-4-one (Iz) can be formed from guanine or 8-oxoG under various oxidative conditions (Scheme 1) [3, 4]. Iz and guanine can potentially form base pairing structures that can in turn cause G:C-C:G transversions [5]. However, Iz is slowly hydrolyzed to 2,2,4-triamino-5(2H)-oxazolone (Oz); this reaction has a half-life of 147?min under physiological conditions (Scheme 1) [3]. In samples of liver DNA, two to six molecules of Oz are detected per 107 guanine bases [6], and the biological impact of Oz should
References
[1]
F. Maehira, I. Miyagi, T. Asato et al., “Alterations of protein kinase C, 8-hydroxydeoxyguanosine, and K-ras oncogene in rat lungs exposed to passive smoking,” Clinica Chimica Acta, vol. 289, no. 1-2, pp. 133–144, 1999.
[2]
S. Shibutani, M. Takeshita, and A. P. Grollman, “Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG,” Nature, vol. 349, no. 6308, pp. 431–434, 1991.
[3]
J. Cadet, M. Berger, G. W. Buchko, P. C. Joshi, S. Raoul, and J.-L. Ravanat, “2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-β-D-erythro-pentofuranosyl)amino]-5-(2H)-oxazolone: a novel and predominant radical oxidation product of 3′,5′-Di-O-acetyl-2′-deoxyguanosine,” Journal of the American Chemical Society, vol. 116, no. 16, pp. 7403–7404, 1994.
[4]
W. Luo, J. G. Muller, and C. J. Burrows, “The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine,” Organic Letters, vol. 3, no. 18, pp. 2801–2804, 2001.
[5]
K. Kino and H. Sugiyama, “Possible cause of G--G transversion mutation by guanine oxidation product, imidazolone,” Chemistry & Biology, vol. 8, no. 4, pp. 369–378, 2001.
[6]
B. Matter, D. Malejka-Giganti, A. S. Csallany, and N. Tretyakova, “Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-β-D-erythro-pentofuranosyl) amino]-5(2H)-oxazolone (oxazolone), in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS,” Nucleic Acids Research, vol. 34, no. 19, pp. 5449–5460, 2006.
[7]
K. Kino, N. Ito, K. Sugasawa, H. Sugiyama, and F. Hanaoka, “Translesion synthesis by human DNA polymerase eta across oxidative products of guanine,” Nucleic Acids Symposium Series, vol. 48, pp. 171–172, 2004.
[8]
K. Kino, K. Sugasawa, T. Mizuno et al., “Eukaryotic DNA polymerases α, β and ε incorporate guanine opposite 2,2,4-triamino-5(2H)-oxazolone,” ChemBioChem, vol. 10, no. 16, pp. 2613–2616, 2009.
[9]
M. Suzuki, K. Kino, M. Morikawa, T. Kobayashi, R. Komori, and H. Miyazawa, “Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine,” Molecules, vol. 17, no. 6, pp. 6705–6715, 2012.
[10]
M. Suzuki, K. Kino, M. Morikawa, T. Kobayashi, and H. Miyazawa, “Calculating distortions of short DNA duplexes with base pairing between an oxidatively damaged guanine and a guanine,” Molecules, vol. 19, no. 8, pp. 11030–11044, 2014.
[11]
L. Yang, W. A. Beard, S. H. Wilson, B. Roux, S. Broyde, and T. Schlick, “Local deformations revealed by dynamics simulations of DNA polymerase β with DNA mismatches at the primer terminus,” Journal of Molecular Biology, vol. 321, no. 3, pp. 459–478, 2002.
[12]
W. A. Beard, D. D. Shock, and S. H. Wilson, “Influence of DNA structure on DNA polymerase β active site function: extension of mutagenic DNA intermediates,” The Journal of Biological Chemistry, vol. 279, no. 30, pp. 31921–31929, 2004.
[13]
T. Matsuda, K. Bebenek, C. Masutani, I. B. Rogozin, F. Hanaoka, and T. A. Kunkel, “Error rate and specificity of human and murine DNA polymerase η,” Journal of Molecular Biology, vol. 312, no. 2, pp. 335–346, 2001.
[14]
C. Kano, F. Hanaoka, and J.-Y. Wang, “Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to g and G to C transversions during Ig gene hypermutation,” International Immunology, vol. 24, no. 3, pp. 169–174, 2012.
[15]
C. Masutani, R. Kusumoto, S. Iwai, and F. Hanaoka, “Mechanisms of accurate translesion synthesis by human DNA polymerase η,” EMBO Journal, vol. 19, no. 12, pp. 3100–3109, 2000.