Synergistic activity of cephem antibiotics with silver nanoparticles (Ag NPs) was investigated. Silver nanoparticles were synthesized through biological and chemical method. The combined action of β-lactam cephem antibiotics with both green and chemically synthesized silver nanoparticles enhances the antibacterial activity against wide range of antibiotic resistant pathogens and making them applicable to medical devices and microbial control systems. Synergistic activity of chloramphenicol with silver nanoparticles was also studied. 1. Introduction Beta-lactam antibiotics (penams and cephems) are the largest group of antibiotics widely used in clinical medicine because of their high antibacterial activity [1]. β-Lactam groups of compounds are the most successful example of natural product application and chemotherapy [2]. All the natural and semisynthetic derivatives of β-lactam have their own properties and wide range of applications. Cephem derivatives are one of the new groups of β-lactam antibiotics with cephem ring and they show potent activity against different types of bacteria. Cephem class includes cephalosporins and cephamycins of which more than 22 antibiotics are now in clinical use and the efficacies of these drugs depend on their antibacterial spectra, potencies, and concentrations in tissues. But the empirical therapy and extent use of these agents have caused the development of bacterial resistance by different mechanisms like production of different kinds of β-lactamases (β-lases), alteration of the antibiotic target site, and prevention of access of the antibiotic to the target by way of altered permeability or forced efflux and this may compromise the potential of β-lactam antibiotics. In this regard, considerable attention has been given to silver nanoparticles (Ag NPs), which have well-known antimicrobial properties and are used extensively in various medical and general applications and also the antibacterial, antifungal, and antiviral properties of silver ions, silver compounds, and silver nanoparticles have been extensively studied [3]. Moreover, high surface to volume ratio of silver nanoparticles may contribute to their enhanced antimicrobial properties by increasing the contact surface of silver nanoparticles with the microorganisms. Several studies also suggest that silver nanoparticles, which are well known to have broad spectrum antimicrobial activity against bacteria, virus, and eukaryotic microorganisms [4], interact with the cell membrane and some of them will penetrate the bacterial cell wall, thereby causing the death
References
[1]
G. L. Mandel and A. M. Sande, “Penicillins, cephalosporins, and other beta-lactam antibiotics,” in The Pharmacological Basis of Therapeutics, A. Goodman Gilman, T. W. Rall, A. S. Nies, and P. Taylor, Eds., pp. 1271–1291, Pergamon Press, New York, NY, USA, 8th edition, 1990.
[2]
A. L. Demain and R. P. Blander, “The β-lactam antibiotics: past, present, and future,” Antonie van Leeuwenhoek, vol. 75, no. 1-2, pp. 5–19, 1999.
[3]
K. Ito, M. Hayasaki, and T. Tamaya, “Pharmacokinetics of cephem antibiotics in exudate of pelvic retroperitoneal space after radical hysterectomy and pelvic lymphadenectomy,” Antimicrobial Agents and Chemotherapy, vol. 34, no. 6, pp. 1160–1164, 1990.
[4]
Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 662–668, 2000.
[5]
I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004.
[6]
L. F. Espinosa-Cristóbal, G. A. Martínez-Casta?ón, R. E. Martínez-Martínez, J. P. Loyola-Rodríguez, J. F. Reyes-Macías, and F. Ruiz, “Antibacterial effect of silver nanoparticles against Streptococcus mutans,” Materials Letters, vol. 63, no. 29, pp. 2603–2606, 2009.
[7]
M. C. Berenbaum, “A method for testing for synergy with any number of agents,” The Journal of Infectious Diseases, vol. 137, no. 2, pp. 122–130, 1978.
[8]
E. Jawetz, “The use of combinations of antimicrobial drugs,” Annual Review of Pharmacology, vol. 8, pp. 151–170, 1968.
[9]
K. E. Vivekanandan, K. G. Raj, S. Kumaresana, and M. Pandib, “Biosynthesis of silver nanoparticle activity against bacterial strain, cephalexin antibiotic synergistic activity,” International Journal of Current Science, vol. 4, pp. 1–7, 2012.
[10]
P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” The Journal of Physical Chemistry, vol. 86, no. 17, pp. 3391–3395, 1982.
[11]
A. M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P. T. Kalaichelvan, and R. Venketesan, “Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 1, pp. e103–e109, 2010.
[12]
P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir, vol. 12, no. 3, pp. 788–800, 1996.
[13]
V. K. Vidhu, S. A. Aromal, and D. Philip, “Green synthesis of silver nanoparticles using Macrotyloma uniflorum,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 83, no. 1, pp. 392–397, 2011.
[14]
S. Baset, H. Akbari, H. Zeynali, and M. Shafie, “Size measurement of metal and semiconductor nanoparticles via UV-Vis absorption spectra,” Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 2, pp. 709–716, 2011.
[15]
V. K. Vidhu and D. Philip, “Catalytic degradation of organic dyes using biosynthesized silver nanoparticles,” Micron, vol. 56, pp. 54–62, 2014.
[16]
D. Philip, C. Unni, S. A. Aromal, and V. K. Vidhu, “Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 78, no. 2, pp. 899–904, 2011.
[17]
J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005.
[18]
J. S. Kim, E. Kuk, K. N. Yu et al., “Antimicrobial effects of silver nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 1, pp. 95–101, 2007.
[19]
R. Balaji Raja and P. Singh, “Synergistic effect of silver nanoparticles with the cephalexin antibiotic against the test strains,” Bioresearch Bulletin, vol. 2, no. 4, pp. 171–179, 2012.
[20]
I. N. Ghosh, S. D. Patil, T. K. Sharma, S. K. Srivastava, R. Pathania, and N. K. Navani, “Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications,” International Journal of Nanomedicine, vol. 8, pp. 4721–4731, 2013.
[21]
K. I. Batarseh, “Anomaly and correlation of killing in the therapeutic properties of siliver (I) chelation with glutamic and tartaric acids,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 2, pp. 546–548, 2004.
[22]
A. Contreras and D. Vazquez, “Cooperative and antagonistic interactions of peptidyl tRNA and antibiotics with bacterial ribosomes,” European Journal of Biochemistry, vol. 74, no. 3, pp. 539–547, 1977.
[23]
S. Saha, M. M. Malik, and M. S. Qureshi, “Comparative study of synergistic effects of antibiotics with triangular shaped silver nanoparticles, synthesized using UV-light irradiation, on Staphylococcus aureus and Pseudomonas aeruginosa,” Journal of Biomaterials and Nanobiotechnology, vol. 5, no. 3, pp. 186–193, 2014.