全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Aedes aegypti Pupal Productivity during the Dengue Vector Control Program in a Costal Urban Centre of S?o Paulo State, Brazil

DOI: 10.1155/2014/301083

Full-Text   Cite this paper   Add to My Lib

Abstract:

The control of dengue relies on the elimination of vector breeding sites. This study identified the container categories most productive for A. aegypti within the framework of the S?o Paulo dengue vector control program (DVCP) in S?o Sebasti?o, a large city located on the state’s coast where dengue cases have occurred since 2001. Containers were inspected monthly for the occurrence of mosquito immature stages during two consecutive vector-breeding seasons in 2002–2004. Containers were classified by their material, use, and fixed or removable status. Pupal productivity differed significantly among container types, items made of metal and plastic, and boats being those with the highest relative contribution. Significant correlations between traditional indices of A. aegypti abundance (Container Index, House Index, and Breteau Index) and pupal productivity/demographic indices (Pupae/Container, Pupae/House, Pupae/ha, and Pupae/Person) ranged 0.56–0.65; correlations were not statistically significant for any combination involving the Pupae/Container index. The assessment of pupal productivity indices could be incorporated into the DVCP without any additional operational onus, allowing vector control managers to determine appropriate control actions targeting the most productive containers and sites. Further studies are needed to assess whether pupal productivity indices may be used as epidemiological indicators of risk of dengue transmission. 1. Introduction Dengue is an arboviral disease whose most severe form is dengue haemorrhagic fever, which is caused by four virus serotypes (DENV 1, 2, 3, and 4). Cases of dengue are recorded every year in more than 100 countries; approximately three billion people reside in areas at high risk for virus transmission. Due to the difficulties in combatting the mosquito vectors, vaccination represents an ideal means to control this global health problem. A candidate vaccine is presently showing promising results during the testing phase; however, it is still unavailable to the general population [1, 2]. In many tropical urban areas, the dengue virus is transmitted by the mosquito Aedes aegypti, whose life cycle is strictly associated with anthropic activities. This mosquito uses mostly artificial containers for oviposition and larval growth. Such containers are of a variable nature but are often found in domestic or peridomestic environments. Containers can range from discarded packaging materials creating water receptacles to larger water reservoirs, or they can be associated with building structures, such as drains or

References

[1]  World Health Organization (WHO), “Dengue Control,” http://www.who.int/denguecontrol/en/index.html.
[2]  M. R. Capeding, N. H. Tran, S. R. S. Hadinegoro, et al., “Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial,” The Lancet, vol. 384, no. 9951, pp. 1358–1365, 2014.
[3]  C. M. Glasser, M. Brito-Arduino, G. L. Barbosa, et al., “Comportamento de formas imaturas de Aedes aegypti, no litoral do Estado de S?o Paulo,” Revista de Sociedade Brasileira de Medicina Tropical, vol. 44, no. 3, pp. 349–355, 2011.
[4]  D. A. Focks and N. Alexander, A Multi-Country Study of the Methodology for Surveys of Aedes aegypti Pupal Productivity: Findings and Recommendations, TDR/IRM/DEN/06, World Health Organization/Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland, 2006.
[5]  D. A. Focks, R. J. Brenner, J. Hayes, and E. Daniels, “Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts,” The American Journal of Tropical Medicine and Hygiene, vol. 62, no. 1, pp. 11–18, 2000.
[6]  W. Tun-Lin, B. H. Kay, and A. Barnes, “Understanding productivity, a key to Aedes aegypti surveillance,” American Journal of Tropical Medicine and Hygiene, vol. 53, no. 6, pp. 595–601, 1995.
[7]  T. R. Southwood, G. Murdie, M. Yasuno, R. J. Tonn, and P. M. Reader, “Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand,” Bulletin of the World Health Organization, vol. 46, no. 2, pp. 211–226, 1972.
[8]  W. Tun-Lin, B. H. Kay, A. Barnes, and S. Forsyth, “Critical examination of Aedes aegypti indices: correlations with abundance,” The American Journal of Tropical Medicine and Hygiene, vol. 54, no. 5, pp. 543–547, 1996.
[9]  M. D. G. Teixeira, M. L. Barreto, M. D. C. N. Costa, L. D. A. Ferreira, P. F. C. Vasconcelos, and S. Cairncross, “Dynamics of dengue virus circulation: a silent epidemic in a complex urban area,” Tropical Medicine and International Health, vol. 7, no. 9, pp. 757–762, 2002.
[10]  S. Sulaiman, Z. A. Pawanchee, Z. Arifin, and A. Wahab, “Relationship between breteau and house indices and cases of dengue/dengue hemorrhagic fever in Kuala Lumpur, Malaysia,” Journal of the American Mosquito Control Association, vol. 12, no. 3, pp. 494–496, 1996.
[11]  C. M. E. Romero-Vivas, P. Arango-Padilla, and A. K. I. Falcona, “Pupal-productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia,” Annals of Tropical Medicine and Parasitology, vol. 100, no. 1, pp. S87–S95, 2006.
[12]  D. A. Focks, A Review of Entomological Sampling Methods and Indicators for Dengue Vectors, Document TDR/IDE/Den/03, World Health Organization, Geneva, Switzerland, 2003.
[13]  R. Barrera, M. Amador, and G. G. Clark, “Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico,” Journal of Medical Entomology, vol. 43, no. 3, pp. 484–491, 2006.
[14]  F. M. Garelli, M. O. Espinosa, D. Weinberg, H. D. Coto, M. S. Gaspe, and R. E. Gürtler, “Patterns of Aedes aegypti (Diptera: Culicidae) infestation and container productivity measured using pupal and Stegomyia indices in Northern Argentina,” Journal of Medical Entomology, vol. 46, no. 5, pp. 1176–1186, 2009.
[15]  Secretaria de Estado do Meio Ambiente de S?o Paulo, Instituto Florestal, Parque Estadual da Serra do Mar, and Núcleo de S?o Sebasti?o, Environmental Management Plan 2005, Secretaria de Estado do Meio Ambiente de S?o Paulo, S?o Paulo, Brazil, 2005.
[16]  Instituto Brasileiro de Geografia e Estatística (IBGE), “Brazil County-by-County,” http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=355070&search=sao-paulo|sao-sebastiao.
[17]  J. Setzer, Climate and Ecological Atlas of the State of S?o Paulo, Comiss?o Interestadual da Bacia do Paraná-Uruguai em Colabora??o com as Centrais Elétricas de SP (CESP), S?o Paulo, Brazil, 1966.
[18]  Secretaria de Estado da Saúde de S?o Paulo and Superintendência de Controle de Endemias, Manual de Vigilancia Entomológica de Aedes aegypti [Manual of Entomological Surveillance of Aedes aegypti], Secretaria de Estado da Saúde de S?o Paulo, Sao Paulo, Brazil, 1997.
[19]  Secretaria de Estado da Saúde de S?o Paulo and Superintendência de Controle de Endemias, Norms and Technical Recommendations for Surveillance and Control of Aedes aegypti in the State of S?o Paulo, Secretaria de Estado da Saúde de S?o Paulo, S?o Paulo, Brazil, 2002.
[20]  M. C. G. P. Alves and N. N. Silva, “Simplifica??o do método de estima??o da densidade larvária de Aedes aegypti no Estado de S?o Paulo,” Revista de Saúde Pública, vol. 35, no. 5, pp. 467–473, 2001.
[21]  R. L. Kubota, M. Brito, and J. C. Voltolini, “Método de varredura para exame de criadouros de vetores de dengue e febre amarela urbana,” Revista de Saúde Pública, vol. 37, no. 2, pp. 263–265, 2003.
[22]  Ministério da Saúde and Funda??o Nacional da Saúde, Manual of Dengue: Epidemiological Surveillance and Care of Patients, DEOPE, Brasilia, Brazil, 2nd edition, 1996.
[23]  E. T. Schreiber, S. Chamberlain, R. Thomas, R. Parsons, and G. Baker, “Surveys on artificial container-inhabiting mosquitoes in Sarasota and Tallahassee, Florida I: characterizations of larval habitats,” Journal of the Florida Mosquito Control Association, vol. 63, pp. 7–14, 1992.
[24]  K. Vijayakumar, T. K. Sudheesh Kumar, Z. T. Nujum, F. Umarul, and A. Kuriakose, “A study on container breeding mosquitoes with special reference to Aedes (Stegomyia) aegypti and Aedes albopictus in Thiruvananthapuram district, India,” Journal of Vector Borne Diseases, vol. 51, no. 1, pp. 27–32, 2014.
[25]  D. Pilger, A. Lenhart, P. Manrique-Saide, J. B. Siqueira, W. T. da Rocha, and A. Kroeger, “Is routine dengue vector surveillance in central Brazil able to accurately monitor the Aedes aegypti population? Results from a pupal productivity survey,” Tropical Medicine & International Health, vol. 16, no. 9, pp. 1143–1150, 2011.
[26]  J. I. Arredondo-Jiménez and K. M. Valdez-Delgado, “Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality,” Annals of Tropical Medicine and Parasitology, vol. 100, supplement 1, pp. S17–S32, 2006.
[27]  D. Vezzani and N. Schweigmann, “Suitability of containers from different sources as breeding sites of Aedes aegypti (L.) in a cemetery of Buenos Aires City, Argentina,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 6, pp. 789–792, 2002.
[28]  M. de Brito and O. P. Forattini, “Produtividade de criadouros de Aedes albopictus no Vale do Paraíba, SP, Brasil,” Revista de Saúde Pública, vol. 38, no. 2, pp. 209–215, 2004.
[29]  O. P. Forattini, Medical Culicidology: Identification, Biology, Epidemiology, Edusp, Sao Paulo, Brazil, 2002.
[30]  M. Brito-Arduino, G. R. A. M. Marques, and L. L. Serpa, “Registro de larvas e pupas de Aedes aegypti e Aedes albopictus em recipientes com água salina em condi??es naturais,” Boletim Epidemiológico Paulista, vol. 7, no. 83, pp. 22–28, 2010.
[31]  E. B. Beserra, C. R. M. Fernandes, J. T. de Sousa, E. M. de Freitas, and K. D. Santos, “The effect of water quality in the life cycle and in the attraction for the egg oviposition of Aedes Aegypti (L.) (Diptera: Culicidae),” Neotropical Entomology, vol. 39, no. 6, pp. 1016–1023, 2010.
[32]  Ministério da Saúde and Secretaria de Vigilancia em Saúde Departamento de Vigilancia das Doen?as Transmissíveis, Levantamento Rápido de índices para Aedes aegypti—LIRAa—para Vigilancia Entomológica do Aedes aegypti no Brasil [Larval Index Rapid Assay of Aedes aegypti—LIRAa—for Entomological Surveillance of Aedes aegypti in Brazil], Ministério da Saúde, Brasília-DF, Brazil, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133