A method is presented to detect and quantify structural damages from changes in modal parameters (such as natural frequencies and mode shapes). An inverse problem is formulated to minimize the objective function, defined in terms of discrepancy between the vibration data identified by modal testing and those computed from analytical model, which then solved to locate and assess the structural damage using continuous ant colony optimization algorithm. The damage is formulated as stiffness reduction factor. The study indicates potentiality of the developed code to solve a wide range of inverse identification problems. 1. Introduction Structural health monitoring (SHM) has become an important area of research within the civil, mechanical, aerospace engineering community in recent years. Damage to structure may be caused as a result of normal operations, accidents, deterioration, or severe natural events such as earthquake and storms. Sometimes the extent and location of damage can be determined through visual inspection. But visual inspection technique has a limited capability to detect the damage, especially when the damage lies inside the structure and is not visible. So an effective and reliable global damage assessment methodology is necessary for determination of damage state particularly for these inaccessible regions. Modal parameters based damage detection method has several advantages over alternative techniques due to the fact that the modal parameters depend only on the mechanical characteristics of the structure and not on the excitation applied. Review of modal parameter based damage detection methods was carried out by Doebling et al. [1] and Fan and Qiao [2]. Since natural frequencies can be measured more easily than mode shapes and are less affected by experimental errors; it has been used as a probable damage indicator by many researchers [3, 4]. However, its application is somewhat limited due to its low sensitivity to damage; in particular when the damage is located at regions of low stress. Further, information regarding local damage is associated with higher modes which are difficult to extract experimentally and therefore are not available for damage detection. Alternately, since mode shape represents the relative displacement of all the parts of the structures for that particular mode, they can thereby provide the spatial information about sources of vibration changes. Damage in the structure changes the mode shape locally. The commonly used method for comparing two mode shapes is the modal assurance criterion (MAC) [5] value which
References
[1]
S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-based damage identification methods,” Shock and Vibration Digest, vol. 30, no. 2, pp. 91–105, 1998.
[2]
W. Fan and P. Qiao, “Vibration-based damage identification methods: a review and comparative study,” Structural Health Monitoring, vol. 10, no. 1, pp. 83–111, 2011.
[3]
N. T. Khiem and T. V. Lien, “Multi-crack detection for beam by the natural frequencies,” Journal of Sound and Vibration, vol. 273, no. 1-2, pp. 175–184, 2004.
[4]
D. P. Patil and S. K. Maiti, “Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements,” Journal of Sound and Vibration, vol. 281, no. 1-2, pp. 439–451, 2005.
[5]
R. J. Allemang, “The modal assurance criterion: twenty years of use and abuse,” Sound and Vibration, vol. 37, no. 8, pp. 14–21, 2003.
[6]
C. R. Farrar and G. H. James III, “System identification from ambient vibration measurements on a bridge,” Journal of Sound and Vibration, vol. 205, no. 1, pp. 1–18, 1997.
[7]
O. S. Salawu and C. Williams, “Bridge assessment using forced-vibration testing,” Journal of Structural Engineering, vol. 121, no. 2, pp. 161–173, 1995.
[8]
V. Meruane and W. Heylen, “Damage detection with parallel genetic algorithms and operational modes,” Structural Health Monitoring, vol. 9, no. 6, pp. 481–496, 2010.
[9]
L. Yu and P. Xu, “Structural health monitoring based on continuous ACO method,” Microelectronics Reliability, vol. 51, no. 2, pp. 270–278, 2011.
[10]
R. R. Tripathy and D. Maity, “Damage assessment of structures from changes in curvature damage factor using artificial neural network,” Indian Journal of Engineering & Materials Sciences, vol. 11, no. 5, pp. 369–377, 2004.
[11]
M. Mehrjoo, N. Khaji, H. Moharrami, and A. Bahreininejad, “Damage detection of truss bridge joints using Artificial Neural Networks,” Expert Systems with Applications, vol. 35, no. 3, pp. 1122–1131, 2008.
[12]
J.-H. Park, J.-T. Kim, D.-S. Hong, D.-D. Ho, and J.-H. Yi, “Sequential damage detection approaches for beams using time-modal features and artificial neural networks,” Journal of Sound and Vibration, vol. 323, no. 1-2, pp. 451–474, 2009.
[13]
V. Vallabhaneni and D. Maity, “Application of radial basis neural network on damage assessment of structures,” Procedia Engineering, vol. 14, pp. 3104–3110, 2011.
[14]
D. Maity and R. R. Tripathy, “Damage assessment of structures from changes in natural frequencies using genetic algorithm,” Structural Engineering and Mechanics, vol. 19, no. 1, pp. 21–42, 2005.
[15]
B. Sahoo and D. Maity, “Damage assessment of structures using hybrid neuro-genetic algorithm,” Applied Soft Computing Journal, vol. 7, no. 1, pp. 89–104, 2007.
[16]
M.-T. Vakil-Baghmisheh, M. Peimani, M. H. Sadeghi, and M. M. Ettefagh, “Crack detection in beam-like structures using genetic algorithms,” Applied Soft Computing, vol. 8, no. 2, pp. 1150–1160, 2008.
[17]
H. Liu, K. Xin, and Q. Qi, “Study of structural damage detection with multi-objective function genetic algorithms,” Procedia Engineering, vol. 12, pp. 80–86, 2011.
[18]
A. Majumdar, D. K. Maiti, and D. Maity, “Damage assessment of truss structures from changes in natural frequencies using ant colony optimization,” Applied Mathematics and Computation, vol. 218, no. 19, pp. 9759–9772, 2012.
[19]
A. Majumdar, A. De, D. Maity, and D. K. Maiti, “Damage assessment of beams from changes in natural frequencies using ant colony optimization,” Structural Engineering and Mechanics, vol. 45, no. 3, pp. 387–406, 2013.
[20]
B. Nanda, A. Majumdar, D. Maity, and D. K. Maiti, “Performance comparison among vibration based indicators in damage identification of structures,” Applied Mechanics and Materials, vol. 592-594, pp. 2081–2085, 2014.
[21]
O. Begambre and J. E. Laier, “A hybrid particle swarm optimization: simplex algorithm (PSOS) for structural damage identification,” Advances in Engineering Software, vol. 40, no. 9, pp. 883–891, 2009.
[22]
R. Perera, S.-E. Fang, and A. Ruiz, “Application of particle swarm optimization and genetic algorithms to multiobjective damage identification inverse problems with modelling errors,” Meccanica, vol. 45, no. 5, pp. 723–734, 2010.
[23]
B. Nanda, D. Maity, and D. K. Maiti, “Vibration based structural damage detection technique using particle swarm optimization with incremental swarm size,” International Journal of Aeronautical and Space Sciences, vol. 13, no. 3, pp. 323–331, 2012.
[24]
S. C. Mohan, D. K. Maiti, and D. Maity, “Structural damage assessment using FRF employing particle swarm optimization,” Applied Mathematics and Computation, vol. 219, no. 20, pp. 10387–10400, 2013.
[25]
B. Nanda, D. Maity, and D. K. Maiti, “Crack assessment in frame structures using modal data and unified particle swarm optimization,” Advances in Structural Engineering, vol. 17, no. 5, pp. 747–766, 2014.
[26]
B. Nanda, D. Maity, and D. K. Maiti, “Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization,” Applied Mathematics and Computation, vol. 242, pp. 407–422, 2014.
[27]
M. Dorigo and T. Stutzle, Ant Colony Optimization, The MIT Press, Cambridge, Mass, USA, 2004.
[28]
K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European Journal of Operational Research, vol. 185, no. 3, pp. 1155–1173, 2008.
[29]
S. Madadgar and A. Afshar, “An improved continuous ant algorithm for optimization of water resources problems,” Water Resources Management, vol. 23, no. 10, pp. 2119–2139, 2009.
[30]
M. Mohamad, M. O. Tokhi, and M. Omar, “Continuous ant colony optimisation for active vibration control of flexible beam structures,” in Proceedings of the IEEE International Conference on Mechatronics (ICM '11), pp. 803–808, April 2011.
[31]
M. Abachizadeh and M. Tahani, “Optimizing laminated composites using ant colony algorithms,” in Ant Colony Optimization—Methods and Applications, A. Ostfeld, Ed., InTech, 2011.
[32]
Y. Hajizadeh, M. Christie, and V. Demyanov, “Ant colony optimization for history matching and uncertainty quantification of reservoir models,” Journal of Petroleum Science and Engineering, vol. 77, no. 1, pp. 78–92, 2011.
[33]
T. Warren Liao and P. C. Chang, “Impacts of forecast, inventory policy, and lead time on supply chain inventory—a numerical study,” International Journal of Production Economics, vol. 128, no. 2, pp. 527–537, 2010.
[34]
M. Khalidji, M. Zeiaee, A. Taei, M. R. Jahed-Motlagh, and H. Khaloozadeh, “Dynamically weighted continuous ant colony optimization for biobjective portfolio selection using value-at-risk,” in Proceedings of the 3rd Asia International Conference on Modelling and Simulation (AMS '09), pp. 230–235, Bali, India, May 2009.
[35]
H. Movahedipour, “Application of continuous ACOR to neural network training: direction of arrival problem,” in Ant Colony Optimization—Methods and Applications, A. Ostfeld, Ed., pp. 159–178, InTech, 2011.
[36]
G. Leguizamón and C. A. C. Coello, “An alternative algorithm for continuous optimization problems,” in Swarm Intelligence, M. Dorigo, M. Birattari, G. A. D. Caro, et al., Eds., pp. 48–59, Springer, Berlin, Germany, 2010.
[37]
T. Liao, M. A. M. de Oca, D. Aydin, T. Stützle, and M. Dorigo, “An incremental ant colony algorithm with local search for continuous optimization,” in Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO '11), pp. 125–132, July 2011.
[38]
J. Xiao and L. Li, “A hybrid ant colony optimization for continuous domains,” Expert Systems with Applications, vol. 38, no. 9, pp. 11072–11077, 2011.
[39]
T. W. Liao, R. J. Kuo, and J. T. Hu, “Hybrid ant colony optimization algorithms for mixed discrete-continuous optimization problems,” Applied Mathematics and Computation, vol. 219, no. 6, pp. 3241–3252, 2012.
[40]
M. I. Friswell, J. E. T. Penny, and S. D. Garvey, “Parameter subset selection in damage location,” Inverse Problems in Engineering, vol. 5, no. 3, pp. 189–215, 1997.
[41]
T. Marwala, Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer, 2010.
[42]
H. Hao and Y. Xia, “Vibration-based damage detection of structures by genetic algorithm,” Journal of Computing in Civil Engineering, vol. 16, no. 3, pp. 222–229, 2002.
[43]
L. Yu and P. Xu, “An ACO-based algorithm for structural health monitoring,” in Proceedings of the Prognostics and System Health Management Conference (PHM '10), IEEE, Macau, China, January 2010.